Publications by authors named "O Iu Rybina"

Fundamental mechanisms underlying genetic control of lifespan are intensively studied and discussed due to the increasing importance of extending healthy human life. The stc gene of the model organism Drosophila melanogaster encodes a transcription factor, homolog of the human transcription factor NF-X1, involved in regulation of neuronal development and other processes, as well as in control of lifespan. In this work, we demonstrate that the stc knockdown in embryonic and nerve cells leads to changes in lifespan, with the nature of changes depending on the cell type and sex of individuals.

View Article and Find Full Text PDF

Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets.

View Article and Find Full Text PDF

The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders.

View Article and Find Full Text PDF

Understanding the molecular mechanisms underlying variation in lifespan is central to ensure long life. Lim3 encoding a homolog of the vertebrate Lhx3/4 transcription factors plays a key role in Drosophila neuron development. Here, we demonstrated that Lim3 knockdown early in life decreased survival of adult flies.

View Article and Find Full Text PDF

Molecular mechanisms governing gene expression and defining complex phenotypes are central to understanding the basics of development and aging. Here, we demonstrate that naturally occurring polymorphisms of the Lim3 regulatory region that are associated with variation in gene expression and Drosophila lifespan control are located exclusively in the Polycomb response element (PRE). We find that the Polycomb group (PcG) protein Polycomb (PC) is bound to the PRE only in embryos where Lim3 is present in both repressed and active states.

View Article and Find Full Text PDF