Toxicol Appl Pharmacol
November 2019
Through synthesis of two rare phosphoinositides, PtdIns(3,5)P and PtdIns5P, the ubiquitously expressed phosphoinositide kinase PIKfyve is implicated in pleiotropic cellular functions. Small molecules specifically inhibiting PIKfyve activity cause cytoplasmic vacuolation in all dividing cells in culture yet trigger non-apoptotic death through excessive vacuolation only in cancer cells. Intriguingly, cancer cell toxicity appears to be inhibitor-specific suggesting that additional targets beyond PIKfyve are affected.
View Article and Find Full Text PDFPIKfyve, an evolutionarily conserved kinase synthesizing PtdIns5P and PtdIns(3,5)P2, is crucial for mammalian cell proliferation and viability. Accordingly, PIKfyve inhibitors are now in clinical trials as anti-cancer drugs. Among those, apilimod is the most promising, yet its potency to inhibit PIKfyve and affect endomembrane homeostasis is only partially characterized.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2018
PIKfyve phosphoinositide kinase produces PtdIns(3,5)P and PtdIns5P and governs a myriad of cellular processes including cytoskeleton rearrangements and cell proliferation. The latter entails rigorous investigation since the cytotoxicity of PIKfyve inhibition is a potential therapeutic modality for cancer. Here we report the effects of two PIKfyve-specific inhibitors on the attachment/spreading and viability of mouse embryonic fibroblasts (MEFs) and CC myoblasts.
View Article and Find Full Text PDFThe two evolutionarily conserved mammalian lipid kinases Vps34 and PIKfyve are involved in an important physiological relationship, whereby the former produces phosphatidylinositol (PtdIns) 3P that is used as a substrate for PtdIns(3,5)P2 synthesis by the latter. Reduced production of PtdIns(3,5)P2 in proliferating mammalian cells is phenotypically manifested by the formation of multiple translucent cytoplasmic vacuoles, readily rescued upon exogenous delivery of PtdIns(3,5)P2 or overproduction of PIKfyve. Although the aberrant vacuolation phenomenon has been frequently used as a sensitive functional measure of localized PtdIns(3,5)P2 reduction, cellular factors governing the appearance of cytoplasmic vacuoles under PtdIns3P-PtdIns(3,5)P2 loss remain elusive.
View Article and Find Full Text PDFSystemic deficiency of PIKfyve, the evolutionarily conserved phosphoinositide kinase synthesizing cellular PtdIns5P and PtdIns(3,5)P2 and implicated in insulin signaling, causes early embryonic death in mice. In contrast, mice with muscle-specific Pikfyve disruption have normal lifespan but exhibit early-age whole-body glucose intolerance and muscle insulin resistance, thus establishing the key role of muscle PIKfyve in glucose homeostasis. Fat and muscle tissues control postprandial glucose clearance through different mechanisms, raising questions as to whether adipose Pikfyve disruption will also trigger whole-body metabolic abnormalities, and if so, what the mechanism might be.
View Article and Find Full Text PDF