Publications by authors named "O I Ollila"

Besides their structure, dynamics is pivotal for protein functions, particularly for intrinsically disordered proteins (IDPs) that do not fold into a fixed 3D structure. However, the detection of protein dynamics is difficult for IDPs and other disordered biomolecules. NMR spin relaxation rates are sensitive to the rapid rotations of chemical bonds, but their interpretation is arduous for IDPs or molecular assemblies with a complex dynamic landscape.

View Article and Find Full Text PDF

prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs.

View Article and Find Full Text PDF

Owing to the increase of available computational capabilities and the potential for providing a more accurate description, polarizable molecular dynamics force fields are gaining popularity in modeling biomolecular systems. It is, however, crucial to evaluate how much precision is truly gained with increasing cost and complexity of the simulation. Here, we leverage the NMRlipids open collaboration and Databank to assess the performance of available polarizable lipid models─the CHARMM-Drude and the AMOEBA-based parameters─against high-fidelity experimental data and compare them to the top-performing nonpolarizable models.

View Article and Find Full Text PDF

Peptides or proteins containing small biomolecular aggregates, such as micelles, bicelles, droplets and nanodiscs, are pivotal in many fields ranging from structural biology to pharmaceutics. Monitoring dynamics of such systems has been limited by the lack of experimental methods that could directly detect their fast (picosecond to nanosecond) timescale dynamics. Spin relaxation times from NMR experiments are sensitive to such motions, but their interpretation for biomolecular aggregates is not straightforward.

View Article and Find Full Text PDF

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes.

View Article and Find Full Text PDF