This paper presents a new technique for forming SNOM (Scanning Near-Field Optical Microscopy) cantilevers. The technique is based on the continuous growth of a conical hollow tip using local ion-induced carbon deposition on standard tipless cantilever chips. This method offers precise control of the geometric parameters of the cantilever's tip, including the angle of the tip, the probe's curvature radius, and the input and output aperture diameter.
View Article and Find Full Text PDFAt present, the focused ion beam method is an effective technique for nanoscale profiling of a solid surface and prototyping of micro- and nanoscale structures. The article reveals the results of experimental studies on improving the accuracy and resolution of nanoscale profiling of the surface of solids with a focused ion beam. Investigations of the regularities of the influence of the focused ion beam current, beam dwell time and overlap on the parameters of nanoscale structures and the surface profile have been carried out.
View Article and Find Full Text PDFRecent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs.
View Article and Find Full Text PDFHere, we report a new photosensitive metal-organic framework (MOF) that was constructed via the modification of UiO-66-NH with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crystalline porous compound. The photoresponse of the modified MOF was observed via UV-Vis and IR spectroscopy.
View Article and Find Full Text PDFThis paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO films decreasing from 8.6 × 10 to 1.
View Article and Find Full Text PDF