Publications by authors named "O H Woo"

Purpose: To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.

Methods: From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov).

View Article and Find Full Text PDF

Objective: This study evaluated the applicability of the classical method, height loss ratio (HLR), for identifying major acute compression fractures in clinical practice and compared its performance with deep learning (DL)-based VCF detection methods. Additionally, it examined whether combining the HLR with DL approaches could enhance performance, exploring the potential integration of classical and DL methodologies.

Methods: End-to-End VCF Detection (EEVD), Two-Stage VCF Detection with Segmentation and Detection (TSVD_SD), and Two-Stage VCF Detection with Detection and Classification (TSVD_DC).

View Article and Find Full Text PDF

Clear cell sarcoma (CCS) is a rare malignant soft tissue tumor originating from neural crest cells. Histologically resembling malignant melanoma but lacking cutaneous precursor lesions, CCS is characterized by a specific chromosomal translocation (t[12;22][q13;q12]). Primarily affecting young adults, this tumor typically arises in the extremities, especially the knee, foot, and ankle.

View Article and Find Full Text PDF

Objectives: This study aims to assess the limitations of the height loss ratio (HLR) method and introduce a new approach that integrates a deep learning (DL) model to enhance vertebral compression fracture (VCF) detection performance.

Methods: We conducted a retrospective study on 589 patients with chronic VCFs. We compared four different methods: HLR-only, DL-only, a combination of HLR and DL for positive VCF, and a combination of HLR and DL for negative VCF.

View Article and Find Full Text PDF

This retrospective study examined the diagnostic efficacy of automated deep learning-based bone mineral density (DL-BMD) measurements for osteoporosis screening using 422 CT datasets from four vendors in two medical centers, encompassing 159 chest, 156 abdominal, and 107 lumbar spine datasets. DL-BMD values on L1 and L2 vertebral bodies were compared with manual BMD (m-BMD) measurements using Pearson's correlation and intraclass correlation coefficients. Strong agreement was found between m-BMD and DL-BMD in total CT scans (r = 0.

View Article and Find Full Text PDF