Publications by authors named "O H J Szolar"

The heterotrimeric influenza virus polymerase performs replication and transcription of viral RNA in the nucleus of infected cells. Transcription by "cap-snatching" requires that host-cell pre-mRNAs are bound via their 5' cap to the PB2 subunit. Thus, the PB2 cap-binding site is potentially a good target for new antiviral drugs that will directly inhibit viral replication.

View Article and Find Full Text PDF

Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3' end of a guanine (G) base in RNA.

View Article and Find Full Text PDF

It is generally recognised that novel antiviral drugs, less prone to resistance, would be a desirable alternative to current drug options in order to be able to treat potentially serious influenza infections. The viral polymerase, which performs transcription and replication of the RNA genome, is an attractive target for antiviral drugs since potent polymerase inhibitors could directly stop viral replication at an early stage. Recent structural studies on functional domains of the heterotrimeric polymerase, which comprises subunits PA, PB1 and PB2, open the way to a structure based approach to optimise inhibitors of viral replication.

View Article and Find Full Text PDF

Pyrrolidine dithiocarbamate (PDTC) was examined for its potential in the intranasal treatment of human rhinovirus infections. Prior to clinical testing, a comprehensive non-clinical programme was performed to evaluate the general toxicity of PDTC. The animal experiments included investigations in rodents with study durations ranging from single dose to repeated dosing over a period of 28 days.

View Article and Find Full Text PDF

In this work, we present a comprehensive evaluation of the Agilent Bioanalyzer, a microfluidics-based electrophoretic device that was used for impurity testing of a monoclonal antibody (mAb). We compared the system to SDS-PAGE, both operated under non-reducing conditions and found a significant improvement of accuracy for the Bioanalyzer. In addition, the latter exhibited a larger assay range and lower limit of quantitation (LOQ) based on a predefined total error limit of +/-30%.

View Article and Find Full Text PDF