Publications by authors named "O Guzman"

Bloodstream infections (BSIs) and sepsis are a major cause of morbidity and mortality. Appropriate early antibiotic therapy is crucial for improving the survival of patients with sepsis and septic shock. T2 magnetic resonance (T2MR) technology may enable fast and sensitive detection of ESKAPEc pathogens directly from whole-blood samples.

View Article and Find Full Text PDF

Miami-Dade County (MDC) has over 112,000 septic systems, some of which are at risk of compromise due to water table rise associated with sea level rise. MDC is surrounded by protected water bodies, including Biscayne Bay, with environmentally sensitive ecosystems and is underlain by highly transmissive karstic limestone. The main objective of the study is to provide first estimates of the locations and magnitudes of septic return flows to discharge endpoints.

View Article and Find Full Text PDF

Unlabelled: Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: , , , , , , , and A/C. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs.

View Article and Find Full Text PDF

The optical properties of liquid crystals serve as the basis for display, diagnostic, and sensing technologies. Such properties are generally controlled by relying on electric fields. In this work, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and the corresponding optical response of nematic liquid crystals.

View Article and Find Full Text PDF

In the Chilean salmon farming industry, infection by is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases.

View Article and Find Full Text PDF