Publications by authors named "O Godoy"

With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter- and intra-specific), pollinators and insect herbivores on plant performance (i.e.

View Article and Find Full Text PDF

Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species.

View Article and Find Full Text PDF

Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism-free approach useful when little data or knowledge exist (LOVE; Learning Outcomes Via Experiments).

View Article and Find Full Text PDF

Plants interact in complex networks but how network structure depends on resources, natural enemies and species resource-use strategy remains poorly understood. Here, we quantified competition networks among 18 plants varying in fast-slow strategy, by testing how increased nutrient availability and reduced foliar pathogens affected intra- and inter-specific interactions. Our results show that nitrogen and pathogens altered several aspects of network structure, often in unexpected ways due to fast and slow growing species responding differently.

View Article and Find Full Text PDF

AbstractEcologists increasingly recognize that interactions between two species can be affected by the density of a third species. How these higher-order interactions (HOIs) affect species persistence remains poorly understood. To explore the effect of HOIs stemming from multiple trophic layers on a plant community composition, we experimentally built a mesocosm with three plants and three pollinator species arranged in a fully nested and modified network structure.

View Article and Find Full Text PDF