A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, through synthesizing relatively thick films of compositions CoPt or FePt, CoCu or FeCu, FeGd and FeNi, contributions to DMI from the composition gradient-induced bulk magnetic asymmetry (BMA) and spin-orbit coupling (SOC) are systematically examined.
View Article and Find Full Text PDFWe present an experimental study of time refraction of spin waves (SWs) propagating in microscopic waveguides under the influence of time-varying magnetic fields. Using space- and time-resolved Brillouin light scattering microscopy, we demonstrate that the broken translational symmetry along the time coordinate results in a loss of energy conservation for SWs and thus allows for a broadband and controllable shift of the SW frequency. With an integrated design of SW waveguide and microscopic current line for the generation of strong, nanosecond-long, magnetic field pulses, a conversion efficiency up to 39% of the carrier SW frequency is achieved, significantly larger compared to photonic systems.
View Article and Find Full Text PDF