Antibiotic resistance is a serious global health issue, resulting in at least 1.2 million deaths in 2019. The environment is a potentially important reservoir of antibiotic resistance; however, the fate of Antibiotic Resistance Genes (ARGs) in the environment remains poorly characterized.
View Article and Find Full Text PDFIn recent decades, human food consumption has led to an increased demand for animal-based foods, particularly chicken meat production. The state of Georgia, USA is one of the top broiler chicken producers in the United States, where animals are raised in Concentrated Animal Feeding Operations (CAFOs). Without proper management, CAFOs could negatively impact the environment and become a public health risk as a source of water and air pollution and/or by spreading antimicrobial resistance genes.
View Article and Find Full Text PDFLassa fever, caused by Lassa virus (LASV), is endemic to West Africa, where ≈300,000 illnesses and ≈5,000 deaths occur annually. LASV is primarily spread by infected multimammate rats via urine and fomites, highlighting the need to understand the environmental fate of LASV. We evaluated persistence of LASV Josiah and Sauerwald strains on surfaces, in aqueous solutions, and with sodium hypochlorite disinfection.
View Article and Find Full Text PDFAntibiotic resistance (AR) determinants are enriched in animal manures, a significant portion of which is land-applied as a soil amendment or as fertilizer, leading to potential AR runoff and microbial pollution in adjacent surface waters. To effectively inform AR monitoring and mitigation efforts, a thorough understanding and description of the persistence and transport of manure-derived AR in flowing waters are needed. We used experimental recirculating mesocosms to assess water-column removal rates of antibiotic resistance genes (ARGs) originating from a cow manure slurry collected from a dairy farm.
View Article and Find Full Text PDFAerosol transport of enteric microbiota including fecal pathogens and antimicrobial resistance genes (ARGs) has been documented in a range of settings but remains poorly understood outside indoor environments. We conducted a systematic review of the peer-reviewed literature to summarize evidence on specific enteric microbiota including enteric pathogens and ARGs that have been measured in aerosol samples in urban settings where the risks of outdoor exposure and antibiotic resistance (AR) spread may be highest. Following PRISMA guidelines, we conducted a key word search for articles published within the years 1990-2020 using relevant data sources.
View Article and Find Full Text PDF