The MEK inhibitor selumetinib induces objective responses and provides clinical benefit in children with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PNs). To evaluate whether similar outcomes were possible in adult patients, in whom PN growth is generally slower than in pediatric patients, we conducted an open-label phase 2 study of selumetinib in adults with NF1 PNs. The study was designed to evaluate objective response rate (primary objective), tumor volumetric responses, patient-reported outcomes and pharmacodynamic effects in PN biopsies.
View Article and Find Full Text PDFSemiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or HSe precursors at 650 °C.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2024
Energy transfer across the donor-acceptor interface in organic photovoltaics is usually beneficial to device performance, as it assists energy transport to the site of free charge generation. Here, we present a case where the opposite is true: dilute donor molecules in an acceptor host matrix exhibit ultrafast excitation energy transfer (EET) to the host, which suppresses the free charge yield. We observe an optimal photochemical driving force for free charge generation, as detected via time-resolved microwave conductivity (TRMC), but with a low yield when the sensitizer is excited.
View Article and Find Full Text PDF