Publications by authors named "O Fleissig"

Introduction: Basic research in orthodontics is commonly conducted in rodents. However, experimental studies on orthodontic tooth movement (OTM) lack a standard method to examine OTM and periodontal changes. This study describes a unifying protocol for the analysis of OTM and associated bone microarchitectural changes in mice using microcomputed tomography (µCT).

View Article and Find Full Text PDF

Orthodontic tooth movement (OTM) is generated by a mechanical force that induces an aseptic inflammatory response in the periodontal tissues and a subsequent coordinated process of bone resorption and apposition. In this review, we critically summarize the current knowledge on the immune processes involved in OTM inflammation and provide a novel insight into the relationship between classical inflammation and clinical OTM phases. We found that most studies focused on the acute inflammatory process, which ignites the initial alveolar bone resorption.

View Article and Find Full Text PDF

Sustained mechanical forces applied to tissue are known to shape local immunity. In the oral mucosa, mechanical stress, either naturally induced by masticatory forces or externally via mechanical loading during orthodontic tooth movement (OTM), is translated, in part, by T cells to alveolar bone resorption. Nevertheless, despite being considered critical for OTM, depletion of CD4 and CD8 T cells is reported to have no impact on tooth movement, thus questioning the function of αβT cells in OTM-associated bone resorption.

View Article and Find Full Text PDF

Orthodontic tooth movement (OTM) is a "sterile" inflammatory process. The present study aimed to reveal the underlying biological mechanisms, by studying the force associated-gene expression changes, in a time-dependent manner. Ni-Ti springs were set to move the upper 1-molar in C57BL/6 mice.

View Article and Find Full Text PDF

The current study aimed at investigating the long-term biological mechanisms governing bone regeneration in osseous defects filled with bovine bone (BB). Tooth extraction sockets were filled with BB or left unfilled for natural healing in a C57BL/6 mouse alveolar regeneration bone model ( = 12). Seven weeks later, the alveolar bone samples were analyzed histologically with hematoxylin/eosin and tartrate-resistant acid phosphatase staining.

View Article and Find Full Text PDF