Publications by authors named "O F Kandarakov"

At present, the magnetic selection of genetically modified cells is mainly performed with surface markers naturally expressed by cells such as CD4, LNGFR (low affinity nerve growth factor receptor), and MHC class I molecule H-2Kk. The disadvantage of such markers is the possibility of their undesired and poorly predictable expression by unmodified cells before or after cell manipulation, which makes it essential to develop new surface markers that would not have such a drawback. Earlier, modified CD52 surface protein variants with embedded HA and FLAG epitope tags (CD52/FLAG and CD52/HA) were developed by the group of Dr.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol).

View Article and Find Full Text PDF

Magnetic cell sorting technology stands out because of its speed, simplicity, and ability to process large cell numbers. However, it also suffers from a number of drawbacks, in particular low discrimination power, which results in all-or-none selection outcomes limited to a bulk separation of cell populations into positive and negative fractions, as well as the modest purity of the selected cells and the inability to select subpopulations of cells with high expression of a surface marker. In the present study, we developed a simple solution to this problem and confirmed the effectiveness of this approach by multiple experiments with the magnetic selection of transduced cell populations.

View Article and Find Full Text PDF

The mammalian hematopoietic system is remarkably efficient in meeting an organism's vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions.

View Article and Find Full Text PDF

A study was made of the effect that mitomycin C (MitC) treatment of stromal layers of NIH 3T3 cells expressing Jagged1, a ligand of the Notch receptor, exerts on the growth of hematopoietic Lin(-) mouse bone marrow cells in a co-culture system. MitC treatment of stromal cells significantly increased the number of hematopoietic cells and the frequency of colony-forming cells in stromal co-cultures. Transcriptome analysis of control and MitC-treated stromal cell samples was performed by differential RNA sequencing, and genes downregulated by MitC treatment were predominantly associated with the control of cell proliferation, the cell cycle, chromosome segregation, and DNA metabolism.

View Article and Find Full Text PDF