Cardiac monitoring after heart surgeries is crucial for health maintenance and detecting postoperative complications early. However, current methods like rigid implants have limitations, as they require performing second complex surgeries for removal, increasing infection and inflammation risks, thus prompting research for improved sensing monitoring technologies. Herein, we introduce a nanosensor platform that is biodegradable, biocompatible, and integrated with multifunctions, suitable for use as implants for cardiac monitoring.
View Article and Find Full Text PDFObjective: To overcome limitations of open surgery artificial intelligence (AI) models by curating the largest collection of annotated videos and to leverage this AI-ready data set to develop a generalizable multitask AI model capable of real-time understanding of clinically significant surgical behaviors in prospectively collected real-world surgical videos.
Design, Setting, And Participants: The study team programmatically queried open surgery procedures on YouTube and manually annotated selected videos to create the AI-ready data set used to train a multitask AI model for 2 proof-of-concept studies, one generating surgical signatures that define the patterns of a given procedure and the other identifying kinematics of hand motion that correlate with surgeon skill level and experience. The Annotated Videos of Open Surgery (AVOS) data set includes 1997 videos from 23 open-surgical procedure types uploaded to YouTube from 50 countries over the last 15 years.
A novel conjugation of guar gum with xanthate groups via facile aqueous xanthation reaction has been reported. Density of grafted xanthate on guar gum product (GG-X) is as high as 4.4%, thus GG-X is conceivably characterized and confirmed by various spectrometric, electrochemical, thermogravimetric, and microscopic methods.
View Article and Find Full Text PDFThe demand for interfacing electronics in everyday life is rapidly accelerating, with an ever-growing number of applications in wearable electronics and electronic skins for robotics, prosthetics, and other purposes. Soft sensors that efficiently detect environmental or biological/physiological stimuli have been extensively studied due to their essential role in creating the necessary interfaces for these applications. Unfortunately, due to their natural softness, these sensors are highly sensitive to structural and mechanical damage.
View Article and Find Full Text PDFWe examined the effectiveness of a mental health course for developmental allied healthcare professionals (DAHPs) that focused on emotional and relational processes inherent to treatment. We hypothesized that (a) following the course, DAHPs would report increased awareness and sense of competence in dealing with these processes; (b) an increased sense of competence would be associated with decreased burnout; (c) following the course, DAHPs would increase their reading and participation in seminars about emotional processes in therapy; and (d) DAHPs would report the course had positive effects on their work and that they use a more relationship-based treatment approach. Participants were 153 Israeli DAHPs.
View Article and Find Full Text PDF