Extracellular vesicles (EVs), biomimetics, and other biological nanoparticles (BNs) produced from human cells are gaining increasing attention in the fields of molecular diagnostics and nanomedicine for the delivery of therapeutic cargo. In particular, BNs are considered prospective delivery vehicles for different biologics, including protein and RNA therapeutics. Moreover, EVs are widely used in molecular diagnostics for early detection of disease-associated proteins and RNA.
View Article and Find Full Text PDFIntroduction: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs).
View Article and Find Full Text PDFIntroduction: In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person.
View Article and Find Full Text PDFIntroduction: Rotavirus infection is one of the main concerns in infectious pathology in humans, mammals and birds. Newborn piglets or rodents are usually being used as a laboratory model for the evaluation of immunogenicity and efficacy for all types of vaccines against rotavirus A (RVA), and the use of ELISA for the detection of virus-specific antibodies of specific isotype is an essential step of this evaluation.
Objective: Development of indirect solid-phase ELISA with VP2/VP6 rotavirus VLP as an antigen to detect and assess the distribution of RVA-specific IgG, IgM and IgA in the immune response to rotavirus A.
Natural polyelectrolytes, including in the form of complexes with colloidal particles, are increasingly used in pharmacy due to the possibility of regulated attachment of medicinal substances and their targeted delivery to the target organ. However, the formation, stability, and molecular-mass characteristics of polyelectrolyte nanodispersions (ND) vary depending on the nature and composition of the medium of their origin. This is due to the lack of standardized approaches to quality control and regulatory documentation for most natural ND.
View Article and Find Full Text PDF