Publications by authors named "O Dieguez"

Antiferroelectrics are fundamental mother compounds critical in developing innovative lead-free piezoelectrics and ferroelectrics and hold great promise for wide-ranging applications in energy conversion and electronic devices. However, harnessing their superior properties presents a significant challenge due to the delicate balance required between their various states. In this study, through the unique design of nanopillar structures to alleviate the local polar heterogeneity, we have achieved significantly improved piezo-/ferro-electricity in classic lead-free antiferroelectric AgNbO ( = 1, 0.

View Article and Find Full Text PDF

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy.

View Article and Find Full Text PDF

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm remarkably in strontium titanate (SrTiO), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects.

View Article and Find Full Text PDF

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry.

View Article and Find Full Text PDF

The mean inner potential (V) of crystals plays an important role in electron microscopy. In a few cases, it has been measured experimentally, using mostly electron holography; however, it is not uncommon to find reports that disagree by a few volts regarding the mean inner potential of the same material. Different levels of theory have also been used to estimate its value, often by building the crystal as a superposition of isolated atoms or ions-an independent-atom approximation that does not take bonding into account.

View Article and Find Full Text PDF