The growth hormone receptor (GHR) is expressed in brain regions that are known to participate in the regulation of energy homeostasis and glucose metabolism. We generated a novel transgenic mouse line (GHR) to characterize GHR-expressing neurons specifically in the arcuate nucleus of the hypothalamus (ARC). Here, we demonstrate that ARC neurons are co-localized with agouti-related peptide (AgRP), growth hormone releasing hormone (GHRH), and somatostatin neurons, which are activated by GH stimulation.
View Article and Find Full Text PDFMany aspects of physiological functions are controlled by the hypothalamus, a brain region that connects the neuroendocrine system to whole-body metabolism. Growth hormone (GH) and the GH receptor (GHR) are expressed in hypothalamic regions known to participate in the regulation of feeding and whole-body energy homeostasis. Sirtuin 1 (SIRT1) is the most conserved mamma-lian nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase that plays a key role in controlling life span and sensing nutrient availability in the hypothalamus in response to caloric restriction.
View Article and Find Full Text PDFEnvironmental chemicals play a significant role in the development of metabolic disorders, especially when exposure occurs early in life. We have recently demonstrated that benzene exposure, at concentrations relevant to cigarette smoke, induces a severe metabolic imbalance in a sex-specific manner affecting male but not female mice. However, the roles of benzene in the development of aberrant metabolic outcomes following gestational exposure, remain largely unexplored.
View Article and Find Full Text PDFBrain Behav Immun
October 2020
Benzene is a well-known human carcinogen that is one of the major components of air pollution. Sources of benzene in ambient air include cigarette smoke, e-cigarettes vaping, and evaporation of benzene containing petrol processes. While the carcinogenic effects of benzene exposure have been well studied, less is known about the metabolic effects of benzene exposure.
View Article and Find Full Text PDFThe concept of implantable glucose sensors has been promulgated for more than 40 years. It is now accepted that continuous glucose monitoring (CGM) increases quality of life by allowing informed diabetes management decisions as a result of more optimized glucose control. The focus of this article is to provide a brief overview of the CGM market history, emerging technologies, and the foreseeable challenges for the next CGM generations as well as proposing possible solutions in an effort to advance the next generation of implantable sensor.
View Article and Find Full Text PDF