Publications by authors named "O Dehaese"

Here we report for the first time a passive mode-locking of single section Fabry-Perot (FP) lasers based on InAs quantum dots(QDs) grown on (113)B InP substrate. Devices under study are a 1 and 2 mm long laser diodes emitting around 1.58 µm.

View Article and Find Full Text PDF

Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the efficiency and power consumption of saturable absorbers (SAs) based on SWCNT with SA based on conventional multiple quantum wells.

View Article and Find Full Text PDF

An experimental method for accurate measurements of the reflectivity spectrum of mirrors is presented. It combines the noise reduction obtained with multiple beam reflections on two identical mirrors; high-beam quality, owing to the use of single-mode optical fibers; and high immunity against intensity variations of the beam. This method is demonstrated for characterizing a 30-period GaAs/Al(0.

View Article and Find Full Text PDF

We present experimental results obtained in two-color pump-probe experiments performed in semiconductor self-assembled quantum dot (QD) layers. The sample reflectivities present several acoustic contributions, among which are strong acoustic phonon wave packets. A comparison between one- and two-color experiments and a fine analysis of the echo shape attest that a high magnitude phonon pulse emerges from each single QD layer.

View Article and Find Full Text PDF

We demonstrate what we believe is the first nonmechanical tunable vertical-cavity surface-emitting laser operating in the C band. This was achieved as a result of the combination of an InGaAs quantum well structure with a 6lambda thickness tunable index nano-polymer-dispersed liquid-crystal material. Experimental results exhibited a potential tunable range close to 10 nm, in the preliminary version, and excellent single mode locking due to the side-mode suppression ratio (more than 20 dB) over the whole spectral range.

View Article and Find Full Text PDF