Publications by authors named "O DeSouza"

Most animals move intermittently, pausing or slowing down for short moments and short moves, and darting away towards a new location where to hover again. This pattern occurs at a range of spatial and temporal scales (thence, resembling 'scale-free'), from the quick inspection of local areas to the sum of all movements performed from birth to death. While this pattern has been extensively described, its proximate drivers remain open to debate.

View Article and Find Full Text PDF

Behavioral lab bioassays involving termites must be promptly performed to allow intended observations prior to death from dissecation, typical of these soft-bodied insects. To this end, topic markers have been proposed as an alternative to histological stains which, while not always toxic are inevitably lengthy to apply. Among recommended topic markers, gouache is easy to apply, dries out quickly, but it is known affect termites in the long run, being suitable only to short-term bioassays.

View Article and Find Full Text PDF

Metalliferous soils can selectively shape plant species' physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth.

View Article and Find Full Text PDF

As the number or density of interacting individuals in a social group increases, a transition can develop from uncorrelated and disordered behavior of the individuals to a collective coherent pattern. We expand this observation by exploring the fine details of termite movement patterns to demonstrate that the value of the scaling exponent μ of a power law describing the Lévy walk of an individual is modified collectively as the density of animals in the group changes. This effect is absent when termites interact with inert obstacles.

View Article and Find Full Text PDF

In addition to its builders, termite nests are known to house a variety of secondary opportunistic termite species so-called inquilines, but little is known about the mechanisms governing the maintenance of these symbioses. In a single nest, host and inquiline colonies are likely to engage in conflict due to nestmate discrimination, and an intriguing question is how both species cope with each other in the long term. Evasive behaviour has been suggested as one of the mechanisms reducing the frequency of host-inquiline encounters, yet, the confinement imposed by the nests' physical boundaries suggests that cohabiting species would eventually come across each other.

View Article and Find Full Text PDF