Environmental DNA (eDNA) detection employing quantitative PCR (qPCR) and droplet digital PCR (ddPCR) offers a non-invasive and efficient approach for monitoring aquatic organisms. Accurate and sensitive quantification of eDNA is crucial for tracking rare and invasive species and understanding the biodiversity abundance and distribution of aquatic organisms. This study compares the sensitivity and quantification precision of qPCR and ddPCR for eDNA surveys through Bayesian inference using latent parameters from both known concentration (standards) and environmental samples across three teleost fish species assays.
View Article and Find Full Text PDFDetermining biological status of freshwater ecosystems is critical for ensuring ecosystem health and maintaining associated services to such ecosystems. Freshwater macroinvertebrates respond predictably to environmental disturbances and are widely used in biomonitoring programs. However, many freshwater species are difficult to capture and sort from debris or substrate and morphological identification is challenging, especially larval stages, damaged specimens, or hyperdiverse groups such as Diptera.
View Article and Find Full Text PDFMetabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases.
View Article and Find Full Text PDFThe Atlantic-Mediterranean marine transition is characterised by strong oceanographic barriers and steep environmental gradients that generally result in connectivity breaks between populations from both basins and may lead to local adaptation. Here, we performed a population genomic study of the black brittle star, Ophiocomina nigra, covering most of its distribution range along the Atlantic-Mediterranean region. Interestingly, O.
View Article and Find Full Text PDF