Publications by authors named "O Coriton"

Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA).

View Article and Find Full Text PDF
Article Synopsis
  • Meiosis drives genetic diversity in sexual organisms, but recombination is tightly regulated, mostly occurring in areas with low DNA methylation.
  • Researchers studied two Brassica napus hybrids to identify large regions lacking recombination and explored the role of DNA methylation and structural variations in this absence.
  • Findings suggest that hypermethylated or inverted regions can hinder recombination and may affect important agronomic traits, highlighting the need for breeders to consider these factors when combining beneficial alleles in crop varieties.
View Article and Find Full Text PDF

Meiotic recombination is the main tool used by breeders to generate biodiversity, allowing genetic reshuffling at each generation. It enables the accumulation of favorable alleles while purging deleterious mutations. However, this mechanism is highly regulated with the formation of one to rarely more than three crossovers, which are not randomly distributed.

View Article and Find Full Text PDF

Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed two genomes ('Z1' and 'Chiifu') using advanced sequencing techniques, revealing significant structural variants caused by large insertions and inversions on specific chromosomes, particularly A05, A06, A09, and A10.
  • * Genome size variations of up to 16% were found across 12 accessions, with 'Z1' exhibiting a higher number of certain repetitive elements compared to 'Chiifu', suggesting that structural differences in genomes can influence phenotypic traits.
View Article and Find Full Text PDF