The present study was conducted mainly to evaluate the contribution of the cellular and the humoral responses in protection conferred by the MIC3 DNA vaccine (pMIC3i) that was proved as a potent vaccine against toxoplasmosis. We performed the adoptive transfer of CD4(+) and CD8(+) T lymphocytes from pMIC3i immunized mice to naive ones and the role of humoral immunity was evaluated by in vitro invasion assays. We also constructed plasmids encoding the EGF-like domains and the Lectin-like domain of MIC3, to define which domains of MIC3 are involved in the protection.
View Article and Find Full Text PDFThe protozoan parasite Toxoplasma gondii is equipped with a sophisticated secretory apparatus, including three distinct exocytic organelles, named micronemes, rhoptries, and dense granules. We have dissected the requirements for targeting the microneme protein MIC3, a key component of T. gondii infection.
View Article and Find Full Text PDFApicomplexan parasites invade cells by a unique mechanism involving discharge of secretory vesicles called micronemes. Microneme proteins (MICs) include transmembrane and soluble proteins expressing different adhesive domains. Although the transmembrane protein TRAP and its homologues are thought to bridge cell surface receptors and the parasite submembranous motor, little is known about the function of other MICs.
View Article and Find Full Text PDFAttachment and invasion of host cells by apicomplexan parasites involve the exocytosis of the micronemal proteins (MICs). Most MICs are adhesins, which show homology with adhesive domains from higher eukaryote proteins and undergo proteolytic processing of unknown biological significance during their transport to micronemes. In Toxoplasma gondii, the micronemal homodimeric protein MIC3 is a potent adhesin that displays features shared by most Apicomplexa MICs.
View Article and Find Full Text PDFProtozoan of the phylum Apicomplexa are of high medical and veterinary importance, causing diseases such as malaria, toxoplasmosis and cryptosporidiosis. Invasive stages of apicomplexans possess organelles named micronemes, which are involved in the invasion process. We have recently characterized a protein in micronemes of Toxoplasma gondii, TgMIC3, which possess adhesive properties to host cell surface.
View Article and Find Full Text PDF