Publications by authors named "O Burak Ozdoganlar"

Ice is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes.

View Article and Find Full Text PDF

Transition metal carbides (MXenes) are novel 2D nanomaterials with exceptional properties, promising significant impact in applications such as energy storage, catalysis, and energy conversion. A major barrier preventing the widespread use of MXenes is the lack of methods for assembling MXene in 3D space without significant restacking, which degrades their performance. Here, this challenge is successfully overcome by introducing a novel material system: a 3D network of MXene formed on a porous ceramic backbone.

View Article and Find Full Text PDF

Therapeutic benefits of curcumin for inflammatory diseases have been demonstrated. However, curcumin's potential as a clinical therapeutic has been hindered due to its low solubility and stability in vivo. We hypothesized that a hybrid curcumin carrier that incorporates albumin-binding and extracellular vesicle (EV) encapsulation could effectively address the current challenges of curcumin delivery.

View Article and Find Full Text PDF

Water is one of the most important elements for life on earth. Water's rapid phase-change ability along with its environmental and biological compatibility also makes it a unique structural material for 3D printing of ice structures reproducibly and accurately. This work introduces the freeform 3D ice printing (3D-ICE) process for high-speed and reproducible fabrication of ice structures with micro-scale resolution.

View Article and Find Full Text PDF

Purpose: Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo.

View Article and Find Full Text PDF