In yeast, trehalose is synthesized by a multimeric enzymatic complex: TPS1 encodes trehalose 6-phosphate synthase, which belongs to a complex that is composed of at least three other subunits, including trehalose 6-phosphate phosphatase Tps2 and the redundant regulatory subunits Tps3 and Tsl1. The product of the TPS1 gene plays an essential role in the control of the glycolytic pathway by restricting the influx of glucose into glycolysis. In this paper, we investigated whether the trehalose synthesis pathway could be involved in the control of the other energy-generating pathway: oxidative phosphorylation.
View Article and Find Full Text PDFIn yeast, Ca(2+) and long chain alkylguanidines interact with mitochondria modulating the opening of the yeast mitochondrial unspecific channel. Mammalians possess a similar structure, the mitochondrial permeability transition pore. The composition of these pores is under debate.
View Article and Find Full Text PDFIn living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes taking place during net biomass formation and cell property maintenance. A crucial parameter for growth description is its yield, i.e.
View Article and Find Full Text PDFWhen the yeast protein Ypr140w was expressed in Escherichia coli, a lyso-PC [lysophosphatidylcholine (1-acylglycerophosphorylcholine)] acyltransferase activity was found associated with the membranes of the bacteria. To our knowledge, this is the first identification of a protein capable of catalysing the acylation of lyso-PC molecules to form PC. Fluorescence microscopy analysis of living yeasts revealed that the fusion protein Ypr140w-green fluorescent protein is targeted to the mitochondria.
View Article and Find Full Text PDFIn the yeast Saccharomyces cerevisiae, the most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are the external NADH dehydrogenases (Nde1p and Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p. Subsequently, glycerol 3-phosphate donates electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p).
View Article and Find Full Text PDF