Publications by authors named "O Bunau"

Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

View Article and Find Full Text PDF

The biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science due to the precise morphology of the particles, the chain-like assembly and their unique magnetic properties. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. Despite some successful outcomes, the coordination chemistry and magnetism of such metal-doped magnetosomes still remain largely unknown.

View Article and Find Full Text PDF

We present an extensive study of Pt₁₃ clusters embedded in a Na-Y zeolite, by comparing calculations for isolated clusters to experimental data. We perform structural refinements for various geometries involving the isolated clusters and calculate the corresponding x-ray absorption and magnetic circular dichroism spectra, from the joint perspective of pseudopotential plane wave calculations and real space multiple scattering theory. Taking into account the spin-orbit coupling significantly improves the previous scalar relativistic predictions of magnetic properties.

View Article and Find Full Text PDF

The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350-2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy.

View Article and Find Full Text PDF

The mechanism of photomagnetism in copper octacyanomolybdate molecules is currently under debate. Contrary to the general belief that the photomagnetic transition occurs only due to a photoinduced electron transfer from the molybdenum to the copper atom, recent X-ray magnetic dichroic (XMCD) data clearly indicate that this phenomenon is associated at low temperature to a local low-spin-high-spin transition on the molybdenum atom. In this article we provide theoretical justification for these experimental facts.

View Article and Find Full Text PDF