Publications by authors named "O Breunig"

Article Synopsis
  • Selective-area epitaxy (SAE) is a technique used to create specific shapes of thin films on pre-patterned substrates, allowing for precise control over the growth of materials.
  • This study successfully demonstrates the growth of Hall-bars and nanowires from bulk-insulating topological insulators (TIs) using SAE, which had not been reported before in this context.
  • The newly created TI nanostructures exhibit excellent transport properties and quantum behaviors, presenting opportunities for scalable fabrication of advanced topological devices.
View Article and Find Full Text PDF

Stable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices.

View Article and Find Full Text PDF

Wireless technology relies on the conversion of alternating electromagnetic fields into direct currents, a process known as rectification. Although rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable a highly controllable rectification were recently discovered. One such effect is magnetochiral anisotropy (MCA), in which the resistance of a material or a device depends on both the direction of the current flow and an applied magnetic field.

View Article and Find Full Text PDF

The non-trivial topology of three-dimensional topological insulators dictates the appearance of gapless Dirac surface states. Intriguingly, when made into a nanowire, quantum confinement leads to a peculiar gapped Dirac sub-band structure. This gap is useful for, e.

View Article and Find Full Text PDF

We report a high-resolution terahertz spectroscopic study of quantum spin dynamics in the antiferromagnetic Heisenberg-Ising spin-chain compound BaCo_{2}V_{2}O_{8} as a function of temperature and longitudinal magnetic field. Confined spinon excitations are observed in an antiferromagnetic phase below T_{N}≃5.5  K.

View Article and Find Full Text PDF