Incidental capture of non-target species poses a pervasive threat to many marine species, with sometimes devastating consequences for both fisheries and conservation efforts. Because of the well-known importance of vocalizations in cetaceans, acoustic deterrents have been extensively used for these species. In contrast, acoustic communication for sea turtles has been considered negligible, and this question has been largely unexplored.
View Article and Find Full Text PDFScanning Thermal Microscopy (SThM) has become an important measurement technique for characterizing the thermal properties of materials at the nanometer scale. This technique requires a SThM probe that combines an Atomic Force Microscopy (AFM) probe and a very sensitive resistive thermometer; the thermometer being located at the apex of the probe tip allows for the mapping of temperature or thermal properties of nanostructured materials with very high spatial resolution. The high interest of the SThM technique in the field of thermal nanoscience currently suffers from a low temperature sensitivity despite its high spatial resolution.
View Article and Find Full Text PDFIn this work, the experimental evidence of glass-like phonon dynamics and thermal conductivity in a nanocomposite made of GeTe and amorphous carbon is reported, which is of interest for microelectronics, and specifically phase change memories. It is shown that, the total thermal conductivity is reduced by a factor of three at room temperature with respect to pure GeTe, due to the reduction of both electronic and phononic contributions. This latter, similarly to glasses, is small and weakly increasing with temperature between 100 and 300 K, indicating a mostly diffusive thermal transport and reaching a value of 0.
View Article and Find Full Text PDFThe thermal conductance quantum is a fundamental quantity in quantum transport theory. However, two decades after its first reported measurements and calculations for phonons in suspended nanostructures, reconciling experiments and theory remains elusive. Our massively parallel calculations of phonon transport in micrometer-sized three-dimensional structures suggest that part of the disagreement between theory and experiment stems from the inadequacy of macroscopic concepts to analyze the data.
View Article and Find Full Text PDFPractical applications of heat transport control with artificial metamaterials will heavily depend on the realization of thermal diodes/rectifiers, in which thermal conductivity depends on the heat flux direction. Whereas various macroscale implementations have been made experimentally, nanoscales realizations remain challenging and efficient rectification still requires a better fundamental understanding of heat carriers' transport and nonlinear mechanisms. Here, we propose an experimental realization of a thermal rectifier based on two leads with asymmetric mass gradients separated by a ballistic spacer, as proposed in a recent numerical investigation, and measure its thermal properties electrically with the microbridge technique.
View Article and Find Full Text PDF