IEEE Trans Ultrason Ferroelectr Freq Control
October 2023
Ultrafast ultrasound imaging allows observing rapid phenomena; combined with 3-D imaging it has the potential to provide a more accurate analysis of organs which leads, in the end, to better diagnosis. Coherent compounding using diverging waves is commonly used to reconstruct high-quality images on large volumes while keeping the frame rate high enough to allow dynamic analysis. In practice, the virtual sources (VSs) that drive the diverging waves are often distributed in a deterministic way: following a regular grid, concentric rings, and spirals.
View Article and Find Full Text PDFAccurately estimating all strain components in quasi-static ultrasound elastography is crucial for the full analysis of biological media. In this study, 2D strain tensor imaging was investigated, focusing on the use of a regularization method to improve strain images. This method enforces the tissue property of (quasi-) incompressibility, while penalizing strong field variations, to smooth the displacement fields and reduce the noise in the strain components.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Accurately estimating all strain components in quasi-static ultrasound elastography is crucial for the full analysis of biological media. In this paper, 2D strain tensor imaging is investigated, using a partial differential equation (PDE)-based regularization method. More specifically, this method employs the tissue property of incompressibility to smooth the displacement fields and reduce the noise in the strain components.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2020
The 2-D sparse arrays, in which a few hundreds of elements are distributed on the probe surface according to an optimization procedure, represent an alternative to full 2-D arrays, including thousands of elements usually organized in a grid. Sparse arrays have already been used in B-mode imaging tests, but their application to Doppler investigations has not been reported yet. Since the sparsity of the elements influences the acoustic field, a corresponding influence on the mean frequency (Fm), bandwidth (BW), and signal-to-noise ratio (SNR) of the Doppler spectra is expected.
View Article and Find Full Text PDFThe Homodyned K distribution has been used successfully as a tool in the ultrasound characterization of sparse media, where the scatterer clustering parameter α accurately discriminates between media with different numbers of scatterers per resolution cell. However, as the number of scatterers increases and the corresponding amplitude statistics become Rician, the reliability of the α estimates decreases rapidly. In the present study, we assess the usefulness of α for the characterization of both sparse and concentrated media, using simulated independent and identically distributed (i.
View Article and Find Full Text PDF