The Nπ^{0}π^{0} decays of positive-parity N^{*} and Δ^{*} resonances at about 2 GeV are studied at ELSA by photoproduction of two neutral pions off protons. The data reveal clear evidence for several intermediate resonances: Δ(1232), N(1520)3/2^{-}, and N(1680)5/2^{+}, with spin parities J^{P}=3/2^{+}, 3/2^{-}, and 5/2^{+}. The partial wave analysis (within the Bonn-Gatchina approach) identifies N(1440)1/2^{+} and the N(ππ)_{S wave} (abbreviated as Nσ here) as further isobars and assigns the final states to the formation of nucleon and Δ resonances and to nonresonant contributions.
View Article and Find Full Text PDFEvidence is reported for the existence of a parity doublet of Delta resonances with total angular momentum J=3/2 from photoproduction of the ppi;{0}eta final state. The two parity partners Delta(1920)P33 and Delta(1940)D33 make significant contributions to the reaction. Cascades of resonances into Delta(1232)eta, N(1535)pi, and Na0(980) are clearly observed.
View Article and Find Full Text PDFInformation on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.
View Article and Find Full Text PDFThe photoproduction of omega mesons on nuclei has been investigated using the Crystal Barrel/TAPS experiment at the ELSA tagged photon facility in Bonn. The aim is to study possible in-medium modifications of the omega meson via the reaction gamma + A --> omega + X --> pi(0)gamma + X('). Results obtained for Nb are compared to a reference measurement on a LH2 target.
View Article and Find Full Text PDF