Polyethylene glycol (PEG) conjugation to proteins has emerged as an important technology to produce drug molecules with sustained duration in the body. However, the implications of PEG conjugation to protein aggregation have not been well understood. In this study, conducted under physiological pH and temperature, N-terminal attachment of a 20 kDa PEG moiety to GCSF had the ability to (1) prevent protein precipitation by rendering the aggregates soluble, and (2) slow the rate of aggregation relative to GCSF.
View Article and Find Full Text PDFA recombinant C-terminal truncated form of the human soluble tumor necrosis factor receptor type I (sTNF-RI) was produced in E. coli. This soluble receptor contains the first 2.
View Article and Find Full Text PDFA site-directed method of joining proteins to poly(ethylene glycol) is presented which allows for the preparation of essentially homogeneous PEG-protein derivatives with a single PEG chain conjugated to the amine terminus of the protein. This selectivity is achieved by conducting the reductive alkylation of proteins with PEG-aldehydes at lower pH. Working examples demonstrating the application of this method to improve the delivery characteristics and therapeutic value of several proteins are provided.
View Article and Find Full Text PDFJ Appl Physiol (1985)
November 2001
Pharmacokinetics and immunogenicity of six different recombinant human soluble p55 tumor necrosis factor (TNF) receptor I (sTNFR-I) constructs were evaluated in juvenile baboons. The constructs included either an sTNFR-I IgG1 immunoadhesin (p55 sTNFR-I Fc) or five different sTNFR-I constructs covalently linked to polyethylene glycol. The constructs were administered intravenously three times, and pharmacokinetics and immunogenicity were examined over 63 days.
View Article and Find Full Text PDFThe neurotrophin brain-derived neurotrophic factor (BDNF) shows promise for the treatment of central nervous system (CNS) trauma and disease. Effective delivery methods are required, however, for BDNF to be useful as a therapeutic agent. To this end, we examined the penetration of intrathecally infused N-terminal pegylated BDNF (peg-BDNF) compared to similar infusion of native BDNF after spinal cord injury (SCI).
View Article and Find Full Text PDF