Publications by authors named "O Ayala-Valenzuela"

In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRuGaB.

View Article and Find Full Text PDF

The title compounds are bimetallic MOFs containing [Cu(pyz)] square lattices linked by MF octahedra. In each, only the Cu spins exhibit long-range magnetic order below 3.5 K (M = V) and 2.

View Article and Find Full Text PDF

A current of electrons traversing a landscape of localized spins possessing non-coplanar magnetic order gains a geometrical (Berry) phase, which can lead to a Hall voltage independent of the spin-orbit coupling within the material-a geometrical Hall effect. Here we show that the highly correlated metal UCu(5) possesses an unusually large controllable geometrical Hall effect at T<1.2 K due to its frustration-induced magnetic order.

View Article and Find Full Text PDF

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.

View Article and Find Full Text PDF

The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa(5). This raises the possibility that the high superconducting transition temperature T(c) = 18.

View Article and Find Full Text PDF