The UV/Chlorine process has gained attention in recent years due to the high quantum yield and absorbance of the chlorine species. However, there are still many unknowns around its application as a treatment for drinking water. The potential for the formation of disinfection by-products (DBPs) is one of them.
View Article and Find Full Text PDFIn this study, membrane distillation is evaluated as a technology for non-sewered sanitation, using waste heat to enable separation of clean water from urine. Whilst membrane fouling was observed for urine, wetting was not evident and product water quality met the proposed discharge standard, despite concentration of the feed. Fouling was reversible using physical cleaning, which is similar to previous membrane studies operating without pressure as the driving force.
View Article and Find Full Text PDFUltraviolet (UV) technologies have been very successful in disinfection applications due to their ability to inactivate microorganisms without producing harmful disinfection by-products. However, there have been a number of concerns associated with the use of conventional UV systems such as hazardous mercury content, high capital investment and reduced electrical efficiency. These concerns have set limitations for the use of UV processes.
View Article and Find Full Text PDFThere is growing interest in using light emitting diodes (LEDs) as alternative to traditional mercury lamps for the removal of micropollutants by advanced oxidation processes due to their low energy consumption and potential for high efficiency and long lifetime. This study investigates the penetration and coverage of the light emitted by LEDs in order to build an optimised LED collimated beam apparatus. From the experimental data, cost analysis was conducted in order to identify when LEDs will become economically viable.
View Article and Find Full Text PDFThe treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge.
View Article and Find Full Text PDF