Publications by authors named "O Alibert"

The canonical BRG/BRM-associated factor (cBAF) complex is essential for chromatin opening at enhancers in mammalian cells. However, the nature of the open chromatin remains unclear. Here, we show that, in addition to producing histone-free DNA, cBAF generates stable hemisome-like subnucleosomal particles containing the four core histones associated with 50-80 bp of DNA.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosome fusions pose risks to genome integrity and are linked to cancer by initiating catastrophic mutations such as breakage-fusion-bridge cycles and chromothripsis.
  • A new genetic assay, called the chromosome fusion capture (CFC) assay, was developed to detect and measure rare chromosome fusions in budding yeast, revealing the baseline rate of these fusions in healthy cells.
  • The study found that the stability of chromosome ends is influenced by certain proteins at telomeres that have both positive and negative effects, and the CFC assay also highlights the role of ionizing radiation in causing NHEJ-dependent chromosome fusions.
View Article and Find Full Text PDF

Transcription and maintenance of genome integrity are fundamental cellular functions. Deregulation of transcription and defects in DNA repair lead to serious pathologies. The Mediator complex links RNA polymerase (Pol) II transcription and nucleotide excision repair via Rad2/XPG endonuclease.

View Article and Find Full Text PDF

Cells from Bloom's syndrome patients display genome instability due to a defective BLM and the downregulation of cytidine deaminase. Here, we use a genome-wide RNAi-synthetic lethal screen and transcriptomic profiling to identify genes enabling BLM-deficient and/or cytidine deaminase-deficient cells to tolerate constitutive DNA damage and replication stress. We found a synthetic lethal interaction between cytidine deaminase and microtubule-associated protein Tau deficiencies.

View Article and Find Full Text PDF

Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches.

View Article and Find Full Text PDF