Publications by authors named "O Albagli-Curiel"

Article Synopsis
  • Type 1 diabetes (T1D) results from an autoimmune attack on insulin-producing β cells in the pancreas, often influenced by environmental factors like viral infections.
  • Recent studies indicate that viral infections may cause β cells to lose their insulin-producing identity instead of killing them.
  • The research shows that a synthetic viral mimic can activate genes associated with progenitor-like cells in β cells, pointing to inflammation's role in cell dedifferentiation in T1D.
View Article and Find Full Text PDF

During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question.

View Article and Find Full Text PDF

Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic β-cell dysfunction. However, the mechanisms by which human β-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human β-cell line EndoC-βH2, we demonstrate that β-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human β-cells.

View Article and Find Full Text PDF

A comparative analysis of mouse and human pancreatic development may reveal common mechanisms that control key steps as organ morphogenesis and cell proliferation and differentiation. More specifically, understanding beta cell development remains an issue, despite recent progress related to their generation from human embryonic and induced pluripotent stem cells. In this study, we use an integrated approach, including prospective isolation, organ culture, and characterization of intermediate stages, and report that cells from human and mouse fetal pancreas can be expanded in the long term and give rise to hollow duct-like structures in 3D cultures.

View Article and Find Full Text PDF

Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored.

View Article and Find Full Text PDF