Publications by authors named "O Adomeniene"

Singlet-Triplet energy exchange is an area of active research due to its role in optoelectronic devices and photodynamic therapy. Large spin-orbit coupling (SOC) is difficult to achieve in simple hydrocarbon structures limiting the intersystem crossing (ISC) rates. A new approach to enhance the spin-orbit coupling via helical molecular orbitals is investigated in oligoyne-bridged bifluorenes.

View Article and Find Full Text PDF

Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs.

View Article and Find Full Text PDF

Deep-blue-emitting benzo[c]fluorene-cored compounds featuring twisted peripheral moieties for suppressed concentration quenching of emission were synthesized and investigated as potential materials for light amplification. This detailed study of the effect of concentration on the spontaneous and stimulated emission, excited-state lifetime and susceptibility to form aggregates obtained for different benzofluorenes, has enabled the understanding of the concentration dependence of the amplified spontaneous emission (ASE) threshold and revealed the optimal concentration for the lowest threshold. The weak concentration quenching accompanied by high fluorescence quantum yield (>40%) and radiative decay rate (>5 × 10(8) s(-1)) have enabled the attainment of the lowest ASE threshold in the neat amorphous film of benzofluorene bearing dihexylfluorenyl peripheral moieties.

View Article and Find Full Text PDF

Realization of efficient deep-blue anthracene-based emitters with superior film-forming and charge transport properties is challenging. A series of non-symmetric 9,10-diphenylanthracenes (DPA) with phenyl and pentyl moieties at the 2nd position and alkyl groups at para positions of the 9,10-phenyls were synthesized and investigated. The non-symmetric substitution at the 2nd position enabled to improve film forming properties as compared to those of the unsubstituted DPA and resulted in glass transition temperatures of up to 92 °C.

View Article and Find Full Text PDF