Liquefaction can have devastating consequences by causing increased mobility of debris flows, tailings dam breaches, and settlement following seismic shaking. Observations on the consolidation behaviour of liquefied soils in 1-g or centrifuge shake table tests have permitted significant advancements in analytical and numerical methods to predict the rate and magnitude of consolidation settlement. However, advanced consolidation models introduce material parameters which are currently difficult to define quickly and at low cost.
View Article and Find Full Text PDFLoosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately.
View Article and Find Full Text PDF