are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen is capable of penetrating eukaryotic cells.
View Article and Find Full Text PDFBacteria use cell surface proteins to mediate host-pathogen interactions. Proteins responsible for cell adhesion, including E-cadherin, serve as receptors for entry into the host cell. We have previously shown that an increase in eukaryotic cell sensitivity to correlates with an increase in E-cadherin expression.
View Article and Find Full Text PDFCell membrane rafts form signaling platforms on the cell surface, controlling numerous protein-protein and lipid-protein interactions. Bacteria invading eukaryotic cells trigger cell signaling to induce their own uptake by non-phagocytic cells. The aim of this work was to reveal the involvement of membrane rafts in the penetration of the bacteria and into eukaryotic cells.
View Article and Find Full Text PDFsynthesizes the intracellular metalloprotease protealysin. This work was aimed at searching for bacterial substrates of protealysin among the proteins responsible for replication and cell division. We have shown that protealysin unlimitedly cleaves the SOS response protein RecA.
View Article and Find Full Text PDFOpportunistic pathogen are able to penetrate the eukaryotic cells. The penetration rate can be regulated by bacterial surface protein OmpX. OmpX family proteins are able to bind to host cell surface to the epidermal growth factor receptor (EGFR) and the extracellular matrix protein fibronectin, whose receptors are in return the α5 β1 integrins.
View Article and Find Full Text PDF