The catalytic behavior of a material is influenced by ensembles─the geometric configuration of atoms on the surface. In conventional material systems, ensemble effects and the electronic structure are coupled because these strategies focus on varying the material composition, making it difficult to understand the role of ensembles in isolation. This study introduces a methodology that separates geometric effects from the electronic structure.
View Article and Find Full Text PDFX-ray absorption spectroscopy (XAS) is a powerful technique that provides information about the electronic and local geometric structural properties of newly developed electrocatalysts, especially when it is performed under operating conditions (i.e., ).
View Article and Find Full Text PDFAliphatic diols such as ethylene and propylene glycol are the key products in the chemical industry for manufacturing polymers. The synthesis of these molecules usually implies sequential processes, including epoxidation of olefins using hydrogen peroxide or oxygen with subsequent hydrolysis to glycols. Direct hydroxylation of olefins by cheap and green oxidants is an economically attractive and environmentally friendly route for the synthesis of diols.
View Article and Find Full Text PDFX-ray absorption spectroscopy (XAS) has been central to the study of the Phillips polymerization catalyst (CrO/SiO). As Cr K-edge XAS signatures are sensitive to the oxidation state, geometry and types of ligands on surface (active) sites, the superposition of these effects makes their interpretation challenging. Notably, CO has been particularly used as a reductant to generate low valent Cr sites from CrO/SiO and as a structural IR probe for analysing reduced Cr surface sites.
View Article and Find Full Text PDFUnderstanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships.
View Article and Find Full Text PDF