During transient brain activation cerebral blood flow (CBF) increases substantially more than cerebral metabolic rate of oxygen consumption (CMRO) resulting in blood hyperoxygenation, the basis of BOLD-fMRI contrast. Explanations for the high CBF versus CMRO slope, termed neurovascular coupling (NVC) constant, focused on maintenance of tissue oxygenation to support mitochondrial ATP production. However, paradoxically the brain has a 3-fold lower oxygen extraction fraction (OEF) than other organs with high energy requirements, like heart and muscle during exercise.
View Article and Find Full Text PDFThis paper provides a brief description of the early use of ex vivo nuclear magnetic resonance (NMR) studies of tissue and tissue extracts performed in the laboratory of Dr. Robert G. Shulman from 1975 through 1995 at Bell Laboratories, then later at Yale University.
View Article and Find Full Text PDFTypical magnetic resonance spectroscopy J-editing methods designed to quantify GABA suffer from contamination of both overlapping macromolecules and homocarnosine signal, introducing potential confounds. The aim of this study was to develop a novel method to assess accurately both the relative concentrations of homocarnosine as well as GABA free from overlapping creatine, homocarnosine and macromolecule signal. A novel method which utilized the combination of echo time STEAM and MEGA-sLASER magnetic resonance spectroscopy experiments at 7T were used to quantify the concentration of GABA and homocarnsoine independently, which are typically quantified in tandem.
View Article and Find Full Text PDFObjectives: To compare electrographic seizures, hyperexcitable patterns, and clinical outcomes in lobar and deep intraparenchymal hemorrhage. Additionally, to characterize electrographic seizure and hyperexcitable pattern predictors in each group and determine seizure risk with thalamic involvement.
Design: Retrospective cohort study.
Objective: Continuous EEG (cEEG) monitoring of critically ill patients has gained widespread use, but there is substantial reported variability in its use. We analyzed cEEG and antiseizure drug (ASD) usage at three high volume centers.
Methods: We utilized a multicenter cEEG database used daily as a clinical reporting tool in three tertiary care sites (Emory Hospital, Brigham and Women's Hospital and Yale - New Haven Hospital).