How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons.
View Article and Find Full Text PDFBackground: Astrocytes play an essential role in the normal functioning of the nervous system and are active contributors to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, to comprehend the astrocytes and amyloid plaques relationship there is a need for imaging techniques providing simultaneous visualization of astrocytes using fluorescence and amyloid plaques revealed by transmitted light microscopy.
New Method: The possibility of simultaneous detection of astrocytes by immunocytochemistry (fluorescent) and amyloid plaques by cytochemical Alcian Blue (transparent) using confocal microscopy in 8-month-old 5хFAD mice samples shown.
Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus.
View Article and Find Full Text PDFNeuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers.
View Article and Find Full Text PDF