Pollutants emitted from all over the world may reach pristine areas, such as the Arctic. The Svalbard reindeer (Rangifer tarandus platyrhynchus) has been the subject of a few studies reporting toxic metal concentrations. However, these studies either date back a few decades or exclusively used non-invasive samples (e.
View Article and Find Full Text PDFBiological material and health information from patients are valuable for medical research. Under a "broad" consent model, hospital patients in Norway can consent to their biological material and health information being stored in research biobanks and used for "specific, broadly defined research purposes" within a specified medical research area but not for medical research in general. Patients are asked to provide new consent each time researchers wish to use their material in a different medical research area.
View Article and Find Full Text PDFArctic rivers, intricately linked to fjord systems, wield significant influence over the geochemical and biological dynamics of the upper Arctic Ocean, providing it with freshwater, nutrients, suspended particles, and potentially harmful pollutants. To comprehend the full picture of the Arctic ecosystem, it is crucial to understand how these rivers vary across regions and seasons, especially considering ongoing climate changes. However, comprehensive studies that address long-term observations and seasonal variations in Arctic rivers' geochemical composition remain scarce.
View Article and Find Full Text PDFBackground: The accumulation of dissolved organic matter (DOM) poses an issue in the management of the water quality from recirculating aquaculture systems (RAS), but its characterization is often not detailed enough to understand the DOM transformations in RAS. In this study, we investigated the application of two distinct non-targeted data processing approaches using ultra-performance liquid chromatography (UPLC) with quadrupole time-of-flight mass spectrometry (QTOF-MS) and two software with different algorithmic designs: PetroOrg and Progenesis QI to accurately characterize the molecular composition of DOM in RAS by UPLC-QTOF-MS.
Results: The UPLC-QTOF-MS resolution in combination with PetroOrg and Progenesis QI software successfully assigned 912 and 106 unique elemental compositions, respectively, including compounds containing carbon, hydrogen, and oxygen (CHO) and nitrogen-containing CHO compounds (CHON), in the DOM samples from RAS.