Publications by authors named "O A Kraevaya"

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Herein, we present the first experimental study of individual water-soluble fullerene derivatives proving their ability to inhibit SARS-CoV-2 in vitro. The initial screening allowed us to identify a few new compounds that have demonstrated pronounced antiviral activity with IC values as low as 390 nM and selectivity indexes reaching 214. Time-of-addition analysis and molecular docking results suggested that the viral protease and/or the spike protein are the most probable targets inhibited by the fullerene derivatives.

View Article and Find Full Text PDF

Background: The new synthesized water-soluble derivatives of C fullerenes are of a great interest to researchers since they can potentially be promising materials for drug delivery, bioimaging, biosonding, and tissue engineering. Surface functionalization of fullerene derivatives changes their chemical and physical characteristics, increasing their solubility and suitability for different biological systems applications, however, any changes in functionalized fullerenes can modulate their cytotoxicity and antioxidant properties. The toxic or protective effect of fullerene derivatives on cells is realized through the activation or inhibition of genes and proteins of key signaling pathways in cells responsible for regulation of cellular reactive oxygen species (ROS) level, proliferation, and apoptosis.

View Article and Find Full Text PDF

Here we report the synthesis of novel fullerene derivatives with attached aliphatic residues based on the previously unknown reactions of chlorofullerene CCl with CH-acids and silyl enol ether.

View Article and Find Full Text PDF

The growing demand for cheap, safe, recyclable, and environmentally friendly batteries highlights the importance of the development of organic electrode materials. Here, we present a novel redox-active polymer comprising a polyaniline-type conjugated backbone and quinizarin and anthraquinone units. The synthesized polymer was explored as a cathode material for batteries, and it delivered promising performance characteristics in both lithium and potassium cells.

View Article and Find Full Text PDF