To exploit the fact that IL-2 receptors are expressed by T-cells responding to foreign antigens but not by resting T-cells, humanized anti-Tac (HAT) armed with alpha-emitting radionuclides (212)Bi and (211)At was evaluated in a cynomolgus cardiac allograft model. Control graft survival was 8.2+/- 0.
View Article and Find Full Text PDFThe syntheses, radiolabeling, antibody conjugation, and in vivo evaluation of new linkers for 211At labeling of humanized anti-Tac (Hu-anti-Tac), an antibody to the alpha-chain of the IL-2 receptor (IL-2Ralpha) shown to be a useful target for radioimmunotherapy are described. Synthesis of the organometallic linker precursors is accomplished by reaction of the corresponding bromo- or iodoaryl esters with bis(tributyltin) in the presence of a palladium catalyst. Subsequent conversion to the corresponding N-succinimidyl ester and labeling with 211At of two new linkers, N-succinimidyl 4-[211At]astato-3-methylbenzoate and N-succinimidyl N-(4-[211At]astatophenethyl)succinamate (SAPS), together with the previously reported N-succinimidyl 4-[211At]astatobenzoate and N-succinimidyl 3-[211At]astato-4-methylbenzoate, are each conjugated to Hu-anti-Tac.
View Article and Find Full Text PDFCancer Biother Radiopharm
April 2001
Among the radionuclides considered for radioimmunotherapy, alpha-emitters such as the bismuth isotopes, 212Bi and 213Bi, are of particular interest. The macrocyclic ligand, DOTA, has been shown to form stable complexes with bismuth isotopes. The kinetics of the complexation of bismuth with the DOTA chelate, however, are slow and impractical for use with 212Bi and 213Bi that have half-lives of 60.
View Article and Find Full Text PDFCancer Biother Radiopharm
June 1999
Monoclonal antibodies (MAbs) labeled with radiometallonuclides via metal chelators are being investigated in the laboratory for use in clinical trials. The biodistribution of 111In- and 88Y-labeled antibody (MAb B72.3) using two isomeric forms (CHX-A and CHX-B) of the 2-(p-isothiocyanatobenzyl)-cyclohexyl-DTPA was compared in athymic mice bearing LS-174T tumors, human colon carcinoma xenografts.
View Article and Find Full Text PDFB3 is a murine monoclonal antibody (mAb) that recognizes a LewisY carbohydrate antigen present on the surface of many carcinomas. An imaging and Phase I trial was performed to study the ability of 111In-mAb B3 to image known metastasis and determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), kinetics, and biodistribution of 90Y-mAb B3. Patients (n = 26) with advanced epithelial tumors that express the LewisY antigen were entered.
View Article and Find Full Text PDF