Octahedral Mn(I) complexes bearing tridentate donor ligands [(LL'L'')(CO)MnX] have recently emerged as major players in catalytic (de)hydrogenation processes. While most of these systems are still based on structurally rigid pincer scaffolds imposing a meridional coordination mode, for some more flexible tridentate ligands a facial arrangement of donor moieties becomes possible. Accordingly, the geometry of the corresponding Mn(I) hydrides [(LL'L'')(CO)MnH] directly involved in the catalytic processes, namely the nature of the donor extremity located in the -position of the hydride (CO and L for - and -configurations, respectively) may influence their hydride transfer ability.
View Article and Find Full Text PDFA series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine RPCH(R')PR ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold.
View Article and Find Full Text PDFDespite the significance of HO-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between HO and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of HO, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain HO-metal complexes that employs neat HO as both solvent and ligand.
View Article and Find Full Text PDFSystematic modification of the chelating NHC-phosphine ligand (NHC = N-heterocyclic carbene) in highly efficient ketone hydrogenation Mn(I) catalyst fac-[(PhPCHNHC)Mn(CO)Br] has been performed and the catalytic activity of the resulting complexes was evaluated using acetophenone as a benchmark substrate. While the variation of phosphine and NHC moieties led to inferior results than for a parent system, the incorporation of a phenyl substituent into the ligand methylene bridge improved catalytic performance by ca. 3 times providing maximal TON values in the range of 15000-20000.
View Article and Find Full Text PDFMetal-metal cooperation for inert bond activation is a ubiquitous concept in coordination chemistry and catalysis. While the great majority of such transformations proceed intramolecular mode in binuclear complexes, to date only a few examples of intermolecular small molecule activation using usually bimetallic frustrated Lewis pairs (M⋯M') have been reported. We introduce herein an alternative approach for the intermolecular bimetallic cooperativity observed in the catalytic dehydrogenation of amine-boranes, in which the concomitant activation of N-H and B-H bonds of the substrate the synergetic action of Lewis acidic (M) and basic hydride (M-H) metal species derived from the same mononuclear complex (M-Br).
View Article and Find Full Text PDF