Publications by authors named "O A Esakova"

Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an -octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical -adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment.

View Article and Find Full Text PDF

Lipoic acid is an eight-carbon sulfur-containing biomolecule that functions primarily as a cofactor in several multienzyme complexes. It is biosynthesized as an attachment to a specific lysyl residue on one of the subunits of these multienzyme complexes. In and many other organisms, this biosynthetic pathway involves two dedicated proteins: octanoyltransferase (LipB) and lipoyl synthase (LipA).

View Article and Find Full Text PDF

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N-isopentenyladenosine (msiA) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity. The msiA modification is installed onto isopentenyladenosine (iA) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase.

View Article and Find Full Text PDF

Quinolinic acid is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and iminoaspartate (IA) by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique noncysteinyl-ligated iron ion (Fe), which is proposed to bind the hydroxyl group of an intermediate in its reaction to facilitate a dehydration step.

View Article and Find Full Text PDF

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration.

View Article and Find Full Text PDF