The upcoming UCNProBe experiment at Los Alamos National Laboratory will measure the beta decay rate of free neutrons with different systematic uncertainties than previous beam-based neutron lifetime experiments. We have tested a new 10B-coated Yttrium Aluminum Perovskite (YAP:Ce) scintillator and present its properties. The advantages of the YAP:Ce scintillator include its high Fermi potential, which reduces the probability for upscattering of ultracold neutrons (UCN), and its short decay time, which increases sensitivity at high counting rates.
View Article and Find Full Text PDFJ Appl Crystallogr
October 2024
A study of the dead layer thickness and quenching factor of a plastic scintillator for use in ultracold neutron (UCN) experiments is described. Alpha spectroscopy was used to determine the thickness of a thin surface dead layer to be 630 ± 110 nm. The relative light outputs from the decay of 241Am and Compton scattering of electrons were used to extract Birks' law coefficient, yielding a kB value of 0.
View Article and Find Full Text PDFImmunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022.
View Article and Find Full Text PDFThe ability to control crystal nucleation through the simple addition of a nucleating agent (nucleant) is desirable for a huge range of applications. However, effective nucleating agents are known for only a small number of systems, and many questions remain about the mechanisms by which they operate. Here, we explore the features that make an effective nucleant and demonstrate that the biological material hair-which naturally possesses a chemically and topographically complex surface structure-has excellent potential as an effective nucleating agent.
View Article and Find Full Text PDFBackground: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination.
Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination.
Recent advances in X-ray instrumentation and sample injection systems have enabled serial crystallography of protein nanocrystals and the rapid structural analysis of dynamic processes. However, this progress has been restricted to large-scale X-ray free-electron laser (XFEL) and synchrotron facilities, which are often oversubscribed and have long waiting times. Here, we explore the potential of state-of-the-art laboratory X-ray systems to perform comparable analyses when coupled to micro- and millifluidic sample environments.
View Article and Find Full Text PDFIndividuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity.
View Article and Find Full Text PDFWe report an improved measurement of the free neutron lifetime τ_{n} using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38×10^{6} surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ_{n} from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ_{n} measurements and by performing a global likelihood fit to all data while self-consistently incorporating the β-decay lifetime.
View Article and Find Full Text PDFMicrocapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core-shell structures, a multitude of fabrication strategies exist. Here, we report on a method relying on a mixture of temperature-responsive microgel particles, poly(-isopropylacrylamide) (pNIPAM), and a polymer which undergo fluid-fluid phase separation.
View Article and Find Full Text PDFRev Sci Instrum
February 2021
In this paper, we report studies of the Fermi potential and loss per bounce of ultracold neutrons (UCNs) on a deuterated scintillator (Eljen-299-02D). These UCN properties of the scintillator enable its use in a wide variety of applications in fundamental neutron research.
View Article and Find Full Text PDFMany crystallization processes of great importance, including frost heave, biomineralization, the synthesis of nanomaterials, and scale formation, occur in small volumes rather than bulk solution. Here, the influence of confinement on crystallization processes is described, drawing together information from fields as diverse as bioinspired mineralization, templating, pharmaceuticals, colloidal crystallization, and geochemistry. Experiments are principally conducted within confining systems that offer well-defined environments, varying from droplets in microfluidic devices, to cylindrical pores in filtration membranes, to nanoporous glasses and carbon nanotubes.
View Article and Find Full Text PDFObjectives: To assess the long-term safety and efficacy of the Resolute zotarolimus-eluting stent (R-ZES).
Background: The R-ZES has been associated with low rates of adverse events over short-intermediate term follow-up. However, reliable assessment of the safety and efficacy of any implanted device requires long-term evaluation.
Background: Investigation of movement and sensory profiles across STarT Back risk subgroups.
Methods: A chronic low back pain cohort (n = 290) were classified as low, medium or high risk using the STarT Back Tool, and completed a repeated spinal bending task and quantitative sensory testing. Pain summation, time taken and the number of protective behaviours with repeated bending were measured.
Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle.
View Article and Find Full Text PDFThe Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions.
View Article and Find Full Text PDFThe Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.
View Article and Find Full Text PDFThe first comprehensive Li K-edge XANES study of a varied suite of Li-bearing minerals is presented. Drastic changes in the bonding environment for lithium are demonstrated and this can be monitored using the position and intensity of the main Li K-absorption edge. The complex silicates confirm the assignment of the absorption edge to be a convolution of triply degenerate p-like states as previously proposed for simple lithium compounds.
View Article and Find Full Text PDFObjectives: To evaluate the safety and effectiveness of the Closer Vascular Sealing System (VSS) against prespecified performance goals (PGs) in sealing femoral arterial access following 5-7 Fr procedures.
Background: Inconsistent safety profiles, costs and learning curves of earlier generation vascular closure devices have limited their widespread use following transfemoral procedures.
Methods: In this prospective single-arm, multi-center trial, we compared the clinical outcomes in patients undergoing 5-7 Fr transfemoral diagnostic or interventional procedures and access sites managed with Closer VSS against pre-specified PGs.
We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.
View Article and Find Full Text PDFBackground: Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella.
View Article and Find Full Text PDFSalmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not.
View Article and Find Full Text PDF