Publications by authors named "O'Leary V"

Introduction: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles.

View Article and Find Full Text PDF

Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are using modified forms of BoNTs and TeTX, labeled with reporter proteins and fluorophores, to visualize and study cellular processes in neurons, enhancing our understanding of synaptic functions.
  • * The study discusses advanced optical probes made from these toxins, their design, applications in molecular biology and neurodevelopment, advantages, limitations, and future potential, highlighting their role in neuroimaging and neuroscience advancements.
View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis.

View Article and Find Full Text PDF

Introduction: Computed tomography (CT) imaging has become indispensable in the management of medical oncology patients. Risks associated with high cumulative effective dose (CED) are relevant in testicular cancer patients. Split-bolus protocols, whereby the contrast medium injection is divided into two, followed by combining the required phase images in a single scan acquisition has been shown to provide images of comparable image quality and less radiation dose compared to single-bolus split-phase CT for various indications.

View Article and Find Full Text PDF

The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared.

View Article and Find Full Text PDF

In addition to primary reproductive functions, gonadal hormones play an important role in an array of neural mechanisms across the human lifespan. The ageing-related decline in their activity has been linked to the deterioration of cognitive functions in otherwise healthy women, associated with menopause transition, contributing to higher incidents of post-menopause dementia. Given the growing utility of gonadal steroids for birth control, as well as for compensatory treatment of menopause and oophorectomy symptoms, and adjuvant transgender therapy, their long-term effects on neural mechanisms warrant comprehensive assessment.

View Article and Find Full Text PDF

In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities.

View Article and Find Full Text PDF

Adaptive immunity changes over an individual’s lifetime, maturing by adulthood and diminishing with old age. Epigenetic mechanisms involving DNA and histone methylation form the molecular basis of immunological memory during lymphocyte development. Monocytes alter their function to convey immune tolerance, yet the epigenetic influences at play remain to be fully understood in the context of lifespan.

View Article and Find Full Text PDF

Introduction: While the role of physiotherapy as part of a comprehensive inpatient rehabilitation is indisputable, clear evidence concerning the effectiveness of different rehabilitation managements [interdisciplinary implementing the International Classification of Functioning, disability and health (ICF) vs. multidisciplinary model] and physiotherapy categories (neuroproprioceptive "facilitation, inhibition" vs. motor/skill acquisitions using technologies) are still lacking.

View Article and Find Full Text PDF

Autoantibodies to neuronal antigens are viewed as potential biomarkers for neurodegenerative diseases. Increasing evidence, however, suggests a dissociation of the neurodegenerative process in the central nervous system and dynamics of neuronal proteins in peripheral circulation with the prevalence of a wide variety of immunoglobulins reactive to neuronal antigens reported also in the blood of healthy subjects, including children. Recently discovered physiological turnover of neurons in enteric nervous system with release of neuronal proteins in peripheral circulation may account for this conundrum and provide a new perspective on molecular biomarkers of neurodegenerative diseases and immunotherapy.

View Article and Find Full Text PDF

Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation.

View Article and Find Full Text PDF

The cerebellum hosts more than half of all neurons of the human brain, with their organized activity playing a key role in coordinating motor functions. Cerebellar activity has also been implicated in the control of speech, communication, and social behavior, which are compromised in autism spectrum disorders (ASD). Despite major research advances, there is a shortage of mechanistic data relating cellular and molecular changes in the cerebellum to autistic behavior.

View Article and Find Full Text PDF

The autoimmune condition, Celiac Disease (CeD), displays broad clinical symptoms due to gluten exposure. Its genetic association with DQ variants in the human leukocyte antigen (HLA) system has been recognised. Monocyte-derived mature dendritic cells (MoDCs) present gluten peptides through HLA-DQ and co-stimulatory molecules to T lymphocytes, eliciting a cytokine-rich microenvironment.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown.

View Article and Find Full Text PDF

The disproportionate evolutionary expansion of the human cerebral cortex with reinforcement of cholinergic innervations warranted a major rise in the functional and metabolic load of the conserved basal forebrain (BF) cholinergic system. Given that acetylcholine (ACh) regulates properties of the microtubule-associated protein (MAP) tau and promotes non-amyloidogenic processing of amyloid precursor protein (APP), growing neocortex predicts higher demands for ACh, while the emerging role of BF cholinergic projections in Aβ clearance infers greater exposure of source neurons and their innervation fields to amyloid pathology. The higher exposure of evolutionary most recent cortical areas to the amyloid pathology of Alzheimer's disease (AD) with synaptic impairments and atrophy, therefore, might involve attenuated homeostatic effects of BF cholinergic projections, in addition to fall-outs of inherent processes of expanding association areas.

View Article and Find Full Text PDF

The reinstatement and revision of abandoned therapeutic ventures of the past has been an integral part of medical research and advancement. In psychiatry, much interest was generated recently by emerging data on the use of faecal supplements for restoring the neurochemical balance in the brain, and on the ingestion of placenta to stabilize neural circuits disrupted by childbirth-related hormonal changes. Herein, we consider the emerging scientific evidence and socio-cultural prerequisites favouring the re-entry of these heterodox customs, which are reminiscent of widespread instinctive behaviours in wildlife, into modern healthcare.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent.

View Article and Find Full Text PDF

An enigmatic localized pneumonia escalated into a worldwide COVID-19 pandemic from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This review aims to consolidate the extensive biological minutiae of SARS-CoV-2 which requires decipherment. Having one of the largest RNA viral genomes, the single strand contains the genes and ten open reading frames.

View Article and Find Full Text PDF

Synaptic transmission is a fundamental neurobiological process by which neurons interact with each other and non-neuronal cells. It involves release of active substances from the presynaptic neuron onto receptive elements of postsynaptic cells, inducing waves of spreading electrochemical response. While much has been learned about the cellular and molecular mechanisms driving and governing transmitter release and sensing, the evolutionary origin of synaptic connections remains obscure.

View Article and Find Full Text PDF

Although neurocognitive deficit is the best-recognized indicator of Alzheimer's disease (AD), psychotic and other noncognitive symptoms are the prime cause of institutionalization. BACE1 is the rate-limiting enzyme in the production of Aβ of AD, and one of the promising therapeutic targets in countering cognitive decline and amyloid pathology. Changes in BACE1 activity have also emerged to cause significant noncognitive neuropsychiatric symptoms and impairments of circadian rhythms, as evident from clinical trials and reports in transgenic models.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is the principal site for the translation of motor neurochemical signals to muscle activity. Therefore, the release and sensing machinery of acetylcholine (ACh) along with muscle contraction are two of the main targets of natural toxins and pathogens, causing paralysis. Given pharmacology and medical advances, the active ingredients of toxins that target postsynaptic mechanisms have become of major interest, showing promise as drug leads.

View Article and Find Full Text PDF