There is growing interest to investigate classic psychedelics as potential therapeutics for mental illnesses. Previous studies have demonstrated that one dose of psilocybin leads to persisting neural and behavioral changes. The durability of psilocybin's effects suggests that there are likely alterations of gene expression at the transcriptional level.
View Article and Find Full Text PDFIntermetallic compounds containing f-electron elements have been prototypical materials for investigating strong electron correlations and quantum criticality (QC). Their heavy fermion ground state evoked by the magnetic f-electrons is susceptible to the onset of quantum phases, such as magnetism or superconductivity, due to the enhanced effective mass (m) and a corresponding decrease of the Fermi temperature. However, the presence of f-electron valence fluctuations to a non-magnetic state is regarded an anathema to QC, as it usually generates a paramagnetic Fermi-liquid state with quasiparticles of moderate m.
View Article and Find Full Text PDFPhys Rev Lett
September 2020
An odd-occupied quantum dot in a Josephson junction can flip transmission phase, creating a π junction. When the junction couples topological superconductors, no phase flip is expected. We investigate this and related effects in a full-shell hybrid interferometer, using gate voltage to control dot-junction parity and axial magnetic flux to control the transition from trivial to topological superconductivity.
View Article and Find Full Text PDFMajorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport through a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer.
View Article and Find Full Text PDFPurpose: Glioblastoma (GBM) is the most aggressive adult brain cancer, with a 15 month median survivorship attributed to the existence of treatment-refractory brain tumor initiating cells (BTICs). In order to better understand the mechanisms regulating the tumorigenic properties of this population, we studied the role of the polycomb group member BMI1 in our patient-derived GBM BTICs and its relationship with CD133, a well-established marker of BTICs.
Methods: Using gain and loss-of-function studies for Bmi1 in neural stem cells (NSCs) and patient-derived GBM BTICs respectively, we assessed in vitro self-renewal and in vivo tumor formation in these two cell populations.
The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin-releasing hormone receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance and glucose metabolism. We investigated a modified UCN2 peptide as a potential therapeutic agent for the treatment of obesity and insulin resistance, with a specific focus on skeletal muscle. High-fat-fed mice (C57BL/6J) were injected daily with a PEGylated UCN2 peptide (compound A) at 0.
View Article and Find Full Text PDFWe present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without subgap states, Coulomb blockade reveals Cooper-pair mediated transport. When subgap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti)crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling.
View Article and Find Full Text PDFBackground: Severe toxicity is experienced by a substantial minority of patients receiving fluoropyrimidine-based chemotherapy, with approximately 20% of these severe toxicities attributable to polymorphisms in the gene. The codes for the enzyme dihydropyrimidine dehydrogenase (DPD) important in the metabolism of fluoropyrimidine-based chemotherapy. We questioned whether prospective mutation analysis in all patients commencing such therapy would prove more cost-effective than reactive testing of patients experiencing severe toxicity.
View Article and Find Full Text PDFWe report an experimental study of the scaling of zero-bias conductance peaks compatible with Majorana zero modes as a function of magnetic field, tunnel coupling, and temperature in one-dimensional structures fabricated from an epitaxial semiconductor-superconductor heterostructure. Results are consistent with theory, including a peak conductance that is proportional to tunnel coupling, saturates at 2e^{2}/h, decreases as expected with field-dependent gap, and collapses onto a simple scaling function in the dimensionless ratio of temperature and tunnel coupling.
View Article and Find Full Text PDFWe intercalate a van der Waals heterostructure of graphene and hexagonal boron nitride with Au, by encapsulation, and show that the Au at the interface is two dimensional. Charge transfer upon current annealing indicates the redistribution of the Au and induces splitting of the graphene band structure. The effect of an in-plane magnetic field confirms that the splitting is due to spin splitting and that the spin polarization is in the plane, characteristic of a Rashba interaction with a magnitude of approximately 25 meV.
View Article and Find Full Text PDFObjective: Studies to date have found little correlation between subjective and objective measures of cognitive function in cancer patients, making it difficult to interpret the significance of their cognitive complaints. The purpose of this study was to determine if a stronger correlation would be obtained using measures of cognitive change rather than static scores.
Methods: Sixty women with early stage breast cancer underwent repeated cognitive assessment over the course of chemotherapy with a neuropsychological test battery (objective measure) and with the FACT-Cog (subjective measure).
To understand the complex physics of a system with strong electron-electron interactions, the ideal is to control and monitor its properties while tuning an external electric field applied to the system (the electric-field effect). Indeed, complete electric-field control of many-body states in strongly correlated electron systems is fundamental to the next generation of condensed matter research and devices. However, the material must be thin enough to avoid shielding of the electric field in the bulk material.
View Article and Find Full Text PDFMagnetotransport measurements demonstrate that graphene in a van der Waals heterostructure is a sensitive probe of quantum transport in an adjacent WS2 layer via strong Coulomb interactions. We observe a large low-field magnetoresistance (≫ e(2)/h) and a -ln T temperature dependence of the resistance. In-plane magnetic field resistance indicates the origin is orbital and nonclassical.
View Article and Find Full Text PDFUltrathin black phosphorus is a two-dimensional semiconductor with a sizeable band gap. Its excellent electronic properties make it attractive for applications in transistor, logic and optoelectronic devices. However, it is also the first widely investigated two-dimensional material to undergo degradation upon exposure to ambient air.
View Article and Find Full Text PDFThe development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide.
View Article and Find Full Text PDFAn increasing number of cancer survivors has led to a greater interest in the long-term side effects of cancer treatments and their impact on quality of life. In particular, cognitive impairments have been frequently reported by cancer survivors as an adverse effect which they attribute to the neurotoxicity of chemotherapy and have dubbed "chemobrain" or "chemo fog." Research within the past 15-20 years has explored the many factors thought to contribute to cancer-related cognitive decline in an attempt to determine a potential cause.
View Article and Find Full Text PDFBackground: Brain metastases are most common in adults with lung cancer, predicting uniformly poor patient outcome, with a median survival of only months. Despite their frequency and severity, very little is known about tumorigenesis in brain metastases.
Methods: We applied previously developed primary solid tumor-initiating cell models to the study of brain metastases from the lung to evaluate the presence of a cancer stem cell population.
Phys Rev Lett
October 2012
β-YbAlB(4) is the unique heavy fermion superconductor that exhibits unconventional quantum criticality without tuning in a strongly intermediate valence state. Despite the large coherence temperature, set by the peak of the longitudinal resistivity, our Hall effect measurements reveal that resonant skew scattering from incoherent local moments persists down to at least ~40 K, where the Hall coefficient exhibits a distinct minimum signaling another formation of coherence. The observation strongly suggests that the hybridization between f moments and conduction electrons has a two-component character with distinct Kondo or coherence scales T(K) of ~40 K and 200 K; this is confirmed by the magnetic field dependence of ρ(xy).
View Article and Find Full Text PDFGhrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets.
View Article and Find Full Text PDFBmi1 is a key stem cell regulatory gene implicated in the pathogenesis of many aggressive cancers, including medulloblastoma. Overexpression of Bmi1 promotes cell proliferation and is required for hedgehog (Hh) pathway-driven tumorigenesis. This study aimed to determine if Sonic hedgehog (Shh) modulates the key stem cell regulatory gene Bmi1 in childhood medulloblastoma brain tumor-initiating cells (BTICs).
View Article and Find Full Text PDFWe report measurements of quantum oscillations detected in the putative nematic phase of Sr3Ru2O7. Improvements in sample purity enabled the resolution of small amplitude de Haas-van Alphen (dHvA) oscillations between two first order metamagnetic transitions delimiting the phase. Two distinct frequencies were observed, whose amplitudes follow the normal Lifshitz-Kosevich profile.
View Article and Find Full Text PDFEarly life events influence vulnerability to psychiatric illness. This has been modelled in rats and it has been demonstrated that different durations of maternal separation shape adult endocrine and behavioural stress reactivity. One system through which maternal separation may act is the locus coeruleus (LC)-norepinephrine system that regulates emotional arousal.
View Article and Find Full Text PDFWe present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4. We compare the data, obtained at fields from 10 to 45 T, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f holes participate in the Fermi surface up to the highest magnetic fields studied.
View Article and Find Full Text PDF