Platinum-based chemotherapy in combination with anti-PD-L1 antibodies has shown promising results in mesothelioma. However, the immunological mechanisms underlying its efficacy are not well understood and there are no predictive biomarkers to guide treatment decisions. Here, we combine time course RNA sequencing (RNA-seq) of peripheral blood mononuclear cells with pre-treatment tumor transcriptome data from the single-arm, phase 2 DREAM trial (N = 54).
View Article and Find Full Text PDFHypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFThis single-arm phase II non-randomised trial (ACTRN12619001265167) evaluated trastuzumab emtansine in solid cancers with HER2 amplification or mutation detected by comprehensive genomic profiling. The primary objective was objective response (OR), while secondary objectives included the time to progression (TTP) on study to TTP on prior therapy ratio, progression-free survival (PFS) and overall survival (OS). The cohort included 16 tumours with HER2 mutations (group 1) and 16 with HER2 amplification (group 2).
View Article and Find Full Text PDFNormal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown.
View Article and Find Full Text PDFBackground: Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) generally has a poor prognosis for patients with limited treatment options. While incorporating immune checkpoint inhibitors (ICIs) has now become the standard of care, the efficacy is variable, with only a subset of patients responding. The complexity of the tumor microenvironment (TME) and the role of tertiary lymphoid structures (TLS) have emerged as critical determinants for immunotherapeutic response.
View Article and Find Full Text PDFHead and neck cancer (HNC) is the seventh most common cancer globally, resulting in 440 000 deaths per year. While there have been advancements in chemoradiotherapy and surgery, relapse occurs in more than half of HNCs, and these patients have a median survival of 10 months and a 2-year survival of < 20%. Only a subset of patients displays durable benefits from immunotherapies in metastatic and recurrent HNC, making it critical to understand the tumor microenvironment (TME) underpinning therapy responses in HNC.
View Article and Find Full Text PDFBackground: Sotorasib 960 mg once daily is approved to treat KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib exhibits non-dose proportional pharmacokinetics and clinical responses at lower doses; therefore, we evaluated the efficacy and safety of sotorasib 960 mg and 240 mg.
Methods: In this phase 2, randomized, open-label study, adults with KRAS G12C-mutated advanced NSCLC received sotorasib 960 mg or 240 mg once daily.
Objectives: Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays.
Methods: In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS).
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFGlycosylation is the most common post-translational modification of proteins and regulates a myriad of fundamental biological processes under normal, and pathological conditions. Altered protein glycosylation is linked to malignant transformation, showing distinct glycopatterns that are associated with cancer initiation and progression by regulating tumor proliferation, invasion, metastasis, and therapeutic resistance. The glycopatterns of small extracellular vesicles (sEVs) released by cancer cells are promising candidates for cancer monitoring since they exhibit glycopatterns similar to their cell-of-origin.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) targeting programmed cell death ligand 1 (PD-L1), or its receptor, PD-1 have improved survival in patients with non-small-cell lung cancer (NSCLC). Assessment of PD-L1 expression requires tissue biopsy or fine needle aspiration that are currently used to identify patients most likely to respond to single agent anti-PD-1/PD-L1 therapy. However, obtaining sufficient tissue to generate a PD-L1 tissue proportion score (TPS) ≥ 50% using immunohistochemistry remains a challenge that potentially may be overcome by liquid biopsies.
View Article and Find Full Text PDFObjectives: Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study.
View Article and Find Full Text PDFBackground: Triple-negative breast cancer (TNBC) is a sub-classification of breast carcinomas, which leads to poor survival outcomes for patients. TNBCs do not possess the hormone receptors that are frequently targeted as a therapeutic in other cancer subtypes and, therefore, chemotherapy remains the standard treatment for TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells, supporting their potential as novel cancer therapy targets.
View Article and Find Full Text PDFSingle-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'--methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity and through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'--methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines.
View Article and Find Full Text PDFPsychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety.
View Article and Find Full Text PDFThe spatial localisation of immune cells within tumours are key to understand the intercellular communications that can dictate clinical outcomes. Here, we demonstrate an analysis pipeline for highly multiplexed CODEX data to phenotype and profile spatial features and interactions in NSCLC patients that subsequently received PD1 axis immunotherapy. We found that regulatory T cells (Tregs) are enriched in non-responding patients and this was consistent with their localization within stromal and peripheral tumour-margins.
View Article and Find Full Text PDFHigh rates of mortality in non-small cell lung cancer lung cancer is due to inherent and acquired resistance to systemic therapies and subsequent metastatic burden. Metastasis is supported by suppression of the immune system at secondary organs and within the circulation. Modulation of the immune system is now being exploited as a therapeutic target with immune checkpoint inhibitors.
View Article and Find Full Text PDFHuman single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target.
View Article and Find Full Text PDFThe development of new therapies for cancer is underpinned by an increasing need to comprehensively characterize the tumor microenvironment (TME). While traditional approaches have relied on bulk or single-cell approaches, these are limited in their ability to provide cellular context. Deconvolution of the complex TME is fundamental to understanding tumor dynamics and treatment resistance.
View Article and Find Full Text PDFImportance: Arginine deprivation using ADI-PEG20 (pegargiminase) combined with chemotherapy is untested in a randomized study among patients with cancer. ATOMIC-Meso (ADI-PEG20 Targeting of Malignancies Induces Cytotoxicity-Mesothelioma) is a pivotal trial comparing standard first-line chemotherapy plus pegargiminase or placebo in patients with nonepithelioid pleural mesothelioma.
Objective: To determine the effect of pegargiminase-based chemotherapy on survival in nonepithelioid pleural mesothelioma, an arginine-auxotrophic tumor.