Publications by authors named "O'BRIEN F"

Background: Complement is likely to have a role in refractory generalised myasthenia gravis, but no approved therapies specifically target this system. Results from a phase 2 study suggested that eculizumab, a terminal complement inhibitor, produced clinically meaningful improvements in patients with anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis. We further assessed the efficacy and safety of eculizumab in this patient population in a phase 3 trial.

View Article and Find Full Text PDF

The clinical translation of bioactive scaffolds for the treatment of large segmental bone defects has remained a challenge due to safety and efficacy concerns as well as prohibitive costs. The design of an implantable, biocompatible and resorbable device, which can fill the defect space, allow for cell infiltration, differentiation and neovascularisation, while also recapitulating the natural repair process and inducing cells to lay down new bone tissue, would alleviate the problems with existing treatments. We have developed a gene-activated scaffold platform using a bone-mimicking collagen hydroxyapatite scaffold loaded with chitosan nanoparticles carrying genes encoding osteogenic (BMP-2) and angiogenic (VEGF) proteins.

View Article and Find Full Text PDF

The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells.

View Article and Find Full Text PDF

Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates.

View Article and Find Full Text PDF

Peripheral nerve injury presents significant therapeutic challenges for recovery of motor and sensory function in patients. Different clinical approaches exist but to date there has been no consensus on the most effective method of treatment. Here, we investigate a novel approach to peripheral nerve repair using olfactory derived stem (ONS) cells delivered in a biphasic collagen and laminin functionalized hyaluronic acid based nerve guidance conduit (NGC).

View Article and Find Full Text PDF

Recent developments within the field of tissue engineering (TE) have shown that biomaterial scaffold systems can be augmented via the incorporation of gene therapeutics. The objective of this study was to assess the potential of the activated polyamidoamine dendrimer (dPAMAM) transfection reagent (Superfect) as a gene delivery system to mesenchymal stem cells (MSCs) in both monolayer and 3D culture on collagen based scaffolds. dPAMAM-pDNA polyplexes at a mass ratio (M:R) 10:1 (dPAMAM : pDNA) (1 ug pDNA) were capable of facilitating prolonged reporter gene expression in monolayer MSCs which was superior to that facilitated using polyethylenimine (PEI)-pDNA polyplexes (2 ug pDNA).

View Article and Find Full Text PDF

Craniosynostosis is a bone developmental disease where premature ossification of the cranial sutures occurs leading to fused sutures. While biomechanical forces have been implicated in craniosynostosis, evidence of the effect of microenvironmental stiffness changes in the osteogenic commitment of cells from the sutures is lacking. Our aim was to identify the differential genetic expression and osteogenic capability between cells from patent and fused sutures of children with craniosynostosis and whether these differences are driven by changes in the stiffness of the microenvironment.

View Article and Find Full Text PDF

Islet transplantation for the treatment of type 1 diabetes (T1D) is hampered by the shortage of donor tissue and the need for life-long immunosuppression. The engineering of materials to limit host immune rejection opens the possibilities of utilising allogeneic and even xenogeneic cells without the need for systemic immunosuppression. Here we discuss the most recent developments in immunoisolation of transplanted cells using advanced polymeric biomaterials, utilising macroscale to nanoscale approaches, to limit aberrant immune responses.

View Article and Find Full Text PDF

Purpose: We elicited patient experiences from clinical trial simulations to aid in future trial development and to improve patient recruitment and retention.

Patients And Methods: Two simulations of draft Phase II and Phase III anifrolumab studies for systemic lupus erythematosus (SLE)/lupus nephritis (LN) were performed involving African-American patients from Grady Hospital, an indigent care hospital in Atlanta, GA, USA, and white patients from Altoona Arthritis and Osteoporosis Center in Altoona, PA, USA. The clinical trial simulation included an informed consent procedure, a mock screening visit, a mock dosing visit, and a debriefing period for patients and staff.

View Article and Find Full Text PDF

Autologous gastrointestinal tissue has remained the gold-standard reconstructive biomaterial in urology for >100 years. Mucus-secreting epithelium is associated with lifelong metabolic and neuromechanical complications when implanted into the urinary tract. Therefore, the availability of biocompatible tissue-engineered biomaterials such as extracellular matrix (ECM) scaffolds may provide an attractive alternative for urologists.

View Article and Find Full Text PDF

The biofabrication of large natural biomaterial scaffolds into complex 3D shapes which have a controlled microarchitecture remains a major challenge. Freeze-drying (or lyophilization) is a technique used to generate scaffolds in planar 3D geometries. Here we report the development of a new biofabrication process to form a collagen-based scaffold into a large, complex geometry which has a large height to width ratio, and a controlled porous microarchitecture.

View Article and Find Full Text PDF

Background: The transition from high school into young adulthood is a critical developmental period with many young people going to college, moving residence, and entering the work force for the first time. The NEXT Generation Health Study (NEXT) is a nationally representative longitudinal study of adolescent health behaviors. Previous NEXT research has found that the post-high school environment is associated with changes in alcohol use.

View Article and Find Full Text PDF

Peripheral nerve injuries have high incidence rates, limited treatment options and poor clinical outcomes, rendering a significant socioeconomic burden. For effective peripheral nerve repair, the gap or site of injury must be structurally bridged to promote correct reinnervation and functional regeneration. However, effective repair becomes progressively more difficult with larger gaps.

View Article and Find Full Text PDF

Clinical interventions for extensive tissue injury to the larger airways remain limited. Recently, respiratory tissue engineering strategies have emerged with a variety of biomimetic materials and tissue constructs to address these limitations, though rapid epithelialization of the construct with mucociliary function is still largely unresolved. The overall objective of this study was to manufacture an all- retinoic acid (atRA)-loaded bilayered collagen-hyaluronate (atRA-B) scaffold as a platform technology for tracheal tissue regeneration.

View Article and Find Full Text PDF

Calcium supplements are used as an aid in the prevention of osteopenia and osteoporosis and also for the treatment of patients when used along with medication. Many of these supplements are calcium carbonate based. This study compared a calcium-rich, marine multi-mineral complex (Aquamin) to calcium carbonate in an ovariectomised rat model of osteoporosis in order to assess Aquamin's efficacy in preventing the onset of bone loss.

View Article and Find Full Text PDF

ECM-derived scaffolds have previously been developed from devitalized native cartilage and successfully used in tissue engineering. Such ECM-based biomaterials are commonly derived from animal tissue, which may not represent the ideal source for applications in human. Native human ECM can be used as an alternative to xenogeneic tissue; however, its supply may be limited, leading to the need for a more readily available source of such biomaterials.

View Article and Find Full Text PDF

Purpose/aims: Patient-reported outcome measures (PROMs) can be effectively used to uncover the unmet needs of women with cervical cancer for supportive care. Our aim was to explore the feasibility and acceptability of PROM-driven, nurse-led consultations to enhance delivery of supportive care to women with cervical cancer during active anticancer treatment.

Design: A 2-phased, mixed-method prospective study was conducted.

View Article and Find Full Text PDF

The extent of regeneration following biomaterial implantation is dependent on the microenvironment surrounding the implant. Since implant composition can have a profound effect on inflammation, it is essential to understand this process as a non-resolving inflammatory response can lead to fibrous encapsulation and insufficient integration. Incorporation of particulates into implants confers structural and functional benefits, thus optimizing particulate characteristics to enhance immune mediated efficacy is important.

View Article and Find Full Text PDF

Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca-mobilizing messengers important for modulating cardiac excitation-contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not mouse hearts supported NAADP and cADPR synthesis.

View Article and Find Full Text PDF

The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise.

View Article and Find Full Text PDF

Introduction: The aim of this study was to compare the performance of preoperative risk nomograms or detecting lymph node invasion in a cohort of men undergoing radical prostatectomy (RP).

Methods: A retrospective analysis was performed on all men (n = 145) who underwent RP between 2012 and 2015. Preoperative data was inputted to the Memorial Sloan-Kettering Cancer Centre (MSKCC), Partin 2011 and Briganti nomograms and the University of California San Francisco- Centre of the Prostate Risk Assessment tool (UCSF-CAPRA).

View Article and Find Full Text PDF

As drivers age, their risk of being involved in a car collision decreases. The present study investigated if this trend is due, in part, to some risky drivers having a collision early in their driving lives and subsequently reducing their risky driving after that negative experience. Accelerometers and video cameras were installed in the vehicles of 16- to 17-year-old drivers ( N = 254), allowing coders to measure the number of g-force events (i.

View Article and Find Full Text PDF

Key Points: The role of trimeric intracellular cation (TRIC) channels is not known, although evidence suggests they may regulate ryanodine receptors (RyR) via multiple mechanisms. We therefore investigated whether Tric-a gene knockout (KO) alters the single-channel function of skeletal RyR (RyR1). We find that RyR1 from Tric-a KO mice are more sensitive to inhibition by divalent cations, although they respond normally to cytosolic Ca , ATP, caffeine and luminal Ca .

View Article and Find Full Text PDF

Background: Microvascular decompression (MVD) is a safe and effective treatment for trigeminal neuralgia. Cerebellar venous infarction is a complication associated with surgical sacrifice of the superior petrosal vein (SPV). The SPV intervenes between the trigeminal nerve and the surgeon.

View Article and Find Full Text PDF

Unlabelled: Controlling the phenotype of mesenchymal stem cells (MSCs) through the delivery of regulatory genes is a promising strategy in tissue engineering (TE). Essential to effective gene delivery is the choice of gene carrier. Non-viral delivery vectors have been extensively used in TE, however their intrinsic effects on MSC differentiation remain poorly understood.

View Article and Find Full Text PDF